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Hyperthermophiles are expected as the source of thermostable enzymes, but agarose-gel culture is unavail-
able for isolating them because of the high temperature culture condition. In this paper, we proposed the
scaffold suitable for long-term culture of hyperthermophiles, which is applicable for an extremely high-
temperature. We have investigated the dynamics of the attachment and colonisation of Sulfolobus solfataricus,
onto electrospun nanofiber scaffold. Observation by fluorescent microscopy and SEM demonstrated adhered
and colonised onto the polyurethane nanofibres the hydrophilicity of which was enhanced by oxygen plasma
treatment. This research is a first step towards developing a new approach to successful solid-culture of
hyperthermophiles under extreme conditions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hyperthermophiles, isolated from continental and marine volca-
nic environments, grow at near 100 °C [1]. They have different meta-
bolic pathways and enzymes from those of bacteria and eukarya [2,3]
that they are expected as the source of novel enzymes stable in
extreme conditions; high temperature, high pH, low pH, and high
concentration of organic solvent. Therefore, they are not only biological
concerns for the advancement of research, but also the concern with
their industrial application has been growing [4].

To isolate and culture hyperthermophiles, the liquid medium has
been conventionally employed instead of the solid agarose-gel medium
for common bacteria and other cell types [4–6]. Liquidmediumburdens
the isolation of colony because picking up a single colony from liquid
medium is difficult. The main reason why the solid medium has not
been used in their culture is due to the long cultivation time. Their
proliferation is slow and, therefore, it was difficult to keep the medium
volume at high temperature preventing vaporisation. Thus, the im-
provements are needed in the recovery of these ‘unculturable’ micro-
organisms [7,8]. Furthermore, it is difficult to prepare agarose gel at
high temperature, which hyperthermophiles favour. To address these
problems, the culture scaffold is highly desired instead of solid-gel
medium. But, the main hindrance to cultivation is the prevailing lack
of knowledge on the initial attachment and colonisation of the scaffold
[9–11]. This research is a first step in the culture scaffold of Sulfolobus

solfataricus, hyperthermophiles living at high temperature and low
pH. To prepare the nanofiber scaffolds, we employed electrospinning.
This process is widely used in the culture scaffold for mammalian cell
and medical devices, [12,13] because it is convenient and inexpensive
to fabricate scaffolds, applicable to use various polymers and easy-to-
control dimensions of scaffolds.

2. Materials and methods

2.1. Fabrication of nanofiber scaffolds by electrospinning

Polymer solutions chosen were shown in Table 1. Polyurethane
(PU; P22SRNAT, JIS hardness; 82A) was purchased from Nippon
Polyurethane Industry (Tokyo, Japan), polystyrene (PS; Mw 20,000)
from Sigma-Aldrich (MO, USA), tetrahydrofuran (THF) and dimethyl-
formamide (DMF) from Wako Pure Chemical Industries (Osaka,
Japan).

The electrospinning set-up (MECC Co., Ltd., Fukuoka, Japan) is de-
tailed in Scheme 1A. A polymer solution is loaded into a syringe and
driven through a metallic needle at a constant feed rate by a syringe
pump, forming a droplet at the tip of the needle. A high voltage is
applied between the tip and the rotating collector grounded. Electro-
spinning parameters tested are listed in Table 1.

To enhance colonisation nanofibers, each polymer was electrospun
over a unique ‘bridging’ system, lifting the nanofibres from the cover
slip, allowing more surface area to be colonised, see Scheme. 1B. Glass
slides (cover slip, 22 mm×26 mm, thickness no. 5; Matsunami, Osaka,
Japan), were used as a base, upon which two pieces of conductive
double adhesive tape (thickness 0.2 mm) were applied. Silicone rubber
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(thickness 0.3 mm) was then placed on the tape. This arrangement
lifted the fibres 0.5 mm up and away from the surface of the glass
slide. The optimum distance was 7 mm between lifts. To improve sur-
face hydrophilicity of PU and PS nanofibres, oxygen plasma treatment
(100W, 30 s, 0.1 MPa, chamber size, diameter 64mm×depth160 mm)
was carried out using a plasma reactor (PR300; Yamato Scientific,
Tokyo, Japan).

2.2. Culture conditions

The thermoacidophilic archaeon S. solfataricus P1 (JCM11322)
obtained from Japan Collection of Microorganisms (Saitama, Japan). It
was cultured aerobically in medium containing casamino acids (1 g/L),
yeast extract (1 g/L) and the following trace minerals; (NH4)2SO4

(4.9×10−2 M), KH2PO4 (2.1×10−3 M), MgSO4 (1.0×10−3 M), CaCl2
(4.8×10−4 M), FeCl3 (7.1×10−5 M), MnCl2 (9.1×10−6 M), Na2B4O7

(1.2×10−5 M), ZnSO4 (7.7×10−7 M), CuCl2 (2.9×10−7 M), Na2MoO4

(1.2×10−7 M), VOSO4 (1.5×10−7 M), CoSO4 (6.5×10−8 M), adjusted
pH 3.0 with 10 N H2SO4 [14]. One millilitre of the seed culture was in-
oculated onto nanofibres scaffold in a 35-mm polystyrene suspension

culture dish (Corning, NY, USA) with 3 mL of medium. The dish was
taped firmly and incubated at 80 °C for 1 week.

2.3. Fluorescent microscopy

Cultures were washed twice in phosphate buffered saline (PBS) to
remove non-adherent cells then fixed with 4% paraformaldehyde
(PFA) for 30 min. After the fixed cells were washed with PBS twice,
they were stained with Hoechst 33342 (diluted 1:2000; Dojindo
Laboratories, Kumamoto, Japan) for 30 min, being left in the dark,

Table 1
Polymer solutions and the condition of electrospinning.

# Polymer Solvent Conc.,
w/v%

Voltage, kV Infusion rate,
mL/h

Collector
rotation, rpm

1 PU 95% THF/
5% DMF

15 25 0.8 1200

2 PS THF 20 25 0.7 900
3 PS THF 30 25 1.0 900

Scheme 1. Schematic illustration of (A) electrospinning set-up and (B) the ‘bridging’ system, designed to lift and separate individual nanofibers from the glass. Cells are inoculated
and cultured onto the bridged fibres between lifts. (C) Digital photograph of the ‘bridging’ system. Good alignment of PU nanofibres has bridged the 7-mm gap between the two
pieces of silicone rubber. Bar=10 μm.
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Fig. 1. Diameters of fabricated nanofibres. Means±SD.
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and finally washed twice in PBS. The adherent cells on each nanofibre
were observed on a fluorescence microscope (BX51; Olympus, Tokyo,
Japan).

2.4. Scanning electron microscopy

Cultures were fixed with PFA as described above, dehydrated
through a graded series of ethanol (50, 60, 70, 80, 90, 95, 99 and
100%), replaced into 2-methyl-2-propanol (Wako), frozen at 4 °C,
and then lyophilised with a vacuum evaporator. Dried samples were
sputter-coated with Au/Pt (thickness 20 nm), and observed by a scan-
ning electron microscope (S-2600; Hitachi, Tokyo, Japan) [15].

3. Results and discussion

We focused on the wide application and availability of electrospun
nanofibres and applied to the culture scaffold for S. solfataricus,
hyperthermophiles. In this study, PU and PS were chosen, because
they offered many advantages over natural, mainly the ability to pro-
duce a wider range of mechanical properties [16]. The fibres uniform-
ly crossing the bridge in a firm alignment were shown in Scheme. 1C.
In the preliminary experiment, polylactic-co-glycolic acid (75:25;
Mw 20,000; Wako) has been examined, but it has not kept without
dissolution for 1 week at culture conditions (80 °C, pH 3.0). In the
preparation of PU fibres, DMF was added to the solvent THF to slow
the evaporation of the solvent. The concentration of each polymer
was determined on the basis of the viscosity. The collector was rotated
to align fibres. The collector speed was adjusted for each polymer. The
diameters of fabricated fibres were measured by scanning electron
microscopy (SEM) and shown in Fig. 1. The diameters of 15% PU,
20% PS and 30% PS were 1.46±0.70, 1.83±0.56 and 3.90±1.17 μm,
respectively (mean±standard deviation). This result shows that PU
and PS fibres in the wide range of micron to sub-micron have been
made. We have tried to fabricate 12% PU fibre, but it was too thick to
make a bridging substrate.

Then, we tried to culture S. solfataricus on nanofiber for 1 week.
As a result, cell attachment was not observed on PS scaffold, while
attachment was observed on PU fibre (Fig. 2). Consistent with the
observations by SEM (Fig. 3), S. solfataricus attached and colonised
onto the 15% PU nanofibers, while they showed no attachment and
colonisation onto the same-sized 20% PS fibres. The number of at-
tached cells was 0.95 cells/μm, which was counted by SEM images
(the number of counted fibre: n=57; the total length of counted
fibre: 855 μm). We considered that this result is due to the difference
of surface chemistry. When the polymer fibres were exposed to the
culture medium, proteins in the medium are rapidly adsorbed onto
their surface before the cells can adhere. The adsorbed proteins deter-
mine the subsequent cell attachment behaviours [17]. In addition,
both of the non-plasma treated-PU fibre and non-plasma treated-PS

Fig. 2. Fluorescent microscopic observation of S. solfataricus which adhered and spread
well onto the PU nanofibers after 1-week culture. Arrowheads indicate colonies. Cell
nuclei were stained with Hoechst 33342. Fibres showed intrinsic fluorescence.
Bar=100 μm.
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Fig. 3. SEM observation of S. solfataricus cultured on PU nanofibers for 1 week. (A) Low magnification image. Arrowheads indicate colonies. (B, C) High magnification images of a
single cell attached on a thin (B) or thick (C) fibre. (D) High magnification image of a clump of proliferated cells. Bar=10 μm.
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fibre showed no attachment. It is known that plasmas can be used
to alter material surfaces by removing surface layers, to activate the
surface hydrophilicity [18]. The water drop contact angles of the
cast film of PU and PS by after plasma treatment have been reduced
from 94.6°±10.2° to 67.9°±1.5° and 109.5°±3.9° to 20.2°±2.9°.
We considered that the optimal surface for the adsorption of the
adhesion protein was moderately hydrophilic surface, as seen in the
plasma-treated PU.

4. Conclusions

We have investigated the availability of electrospun scaffold,
which showed hydrophilicity by O2 plasma treatment, and the suc-
cessful colonisation of hyperthermophiles was observed by SEM.
This research is a first step towards developing the scaffolds for cell
attachment and colonisation at extreme condition, which leads to
the application of extremophiles to environmental materials and
industrial usage.
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