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Presentation outline

 What is Decentralised Energy?
 Decentralised Energy at Imperial
 Why Interest in DE?

o ICEPT’s work: illustrative examples on micro-CHP

e Conclusions
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With decentralised energy
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Importance of networks, components and people

One vision of the future of power systems (analogy to
Internet evolution:-

Grid 1.0 Grid 2.0

Cenftralised Decentralised

One-way Multi-way

Limited feedback Constant feedback

Small number of large investments Large number of small investments

Emphasis on throughput of energy Emphasis on investment and infrastructure
Active producers, passive consumers Producers and consumers linked and active
Focus on supply of electricity and gas Focus on providing heat and power
Expertise is centralised Expertise is distributed

Supply based on predictions of demand Demand and supply linked and influenced by
(predict-and-provide) each other

Source: Rebecca Willis. grid 2.0 the next generation. Green Alliance, 2006




Decentralised Energy components
Source: adapted from Mariyappan (2003)

(a) Power/heat conversion (both grid-connected and off-grid...)

Fossil fuelled (some with potential for bio-fuel substitutes)

* Relatively large scale, conventional technology, eg:
— Combined-Cycle Gas Turbine (35 MW — 400 MW)
— Internal Combustion Engines (5 kW — 10 MW)

« Smaller scale, eg:
— Stirling Engine (1 kW — 10 kW)
— Microturbines (35 kW — 1 MW)
* Fuel Cells: Solid Oxide or Proton Exchange (250kW- 5MW,; 1kW—-250kW)

Renewables, eg:

« Small Hydro; Micro Hydro (1 MW — 100 MW; 25 kW — 1 MW)
 Wind Turbines(200 Watt — 5 MW, to GW arrays)

» Photovoltaic Arrays (20 Watt — 100 kW)

 Biomass, e.g. based on gasification (100 kW — 20 MW)

(b) Energy storage devices

(c) Demand side: information systems, intelligent control N "
. . . o ICe
7 (d) Associated infrastructures (notably active electricity distribution networks =




Decentralised Energy at Imperial

Strong technology programmes in many departments (eg Fuel Cells, PV,
wind, bioenergy, waste-to-energy, ...)

Department of Electrical and Electronic Engineering: strong group on power
system control, DG integration and future of networks

Centre for Energy Policy and Technology (ICEPT): focus on techno-economic,
environmental and policy analyses of emerging energy options (eg H2, fuel
cells, bioenergy, building integrated and off-grid renewables, and
decentralised energy specifically)

Particular areas of interest to ICEPT

Modelling approaches, and sensitivities of optimum design to economic, market and
environmental factors

Demand-Side participation

Micro-Grids and community heat networks
Small scale waste to energy systems (eg contacts with Ebara corp gasification)
Valuation and risk-management of decentralised energy investments
Transitions to DG power systems and scenarios

Policy aspects




Why interest in Decentralised Energy (globally)?

 Technology
— New, smaller, conversion devices
— Can help overcome T&D network constraints
— Stimulate development of ‘active’ networks

 Environment, economics
— Some options inherently low carbon (eg renewables)
— Can facilitate use of cleaner fuels (eg local wastes or biomass)
— Avoidance of transmission losses
— Opportunity to capture ‘waste’ heat for local heat loads
— Facilitate closer end-user engagement with energy
— Contribution to wider transition to low carbon future...

e Economics, commercial

— Low capital, fast revenue stream = lower risk modular investments
— Value of flexibility, adaptability and diversity in a competitive market
— Integration of electricity, gas & heat suppliers/markets

— Underlying need for new power investments, globally

o Security of supply
o < — Possible improvement in power quality and security of local supply |Cep’[
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Constraints facing Decentralised Energy (in UK)

« Current market structures and rules

e Some high technology costs

* High gas prices

* Planning and connection constraints and public perceptions

* Network integration: capacity to accept is limited and not
always where needed



Growth In electricity generation from renewable
sources since 1990 (source: adapted from DUKES 2002 — 2005)
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Market size - Global DG capacity (< 10 MW) by

market segment

Shift away from « Possibly very significant

centralised shift in emphasis on the part
SRl | of utilities to distributed
Extended power
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off-grid locations
J » Large DG growth expected
Residential /
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Source: Imperial College / E4tech Ltd
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Residential Micro-CHP

o Stirling engine, ICE, Solid Oxide Fuel
Cell, PEM Fuel Cell




System Diagram
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Stack and BOP model
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Optimisation Model Applications

How to model residential CHP applications
Key economic drivers for SOFC-based technology

Influence of ramp constraints on economic and
environmental outcomes

Synthesise a least cost operating strategy

How best to meet thermal demand (eg value of thermal
storage)

Capacity credit of micro-CHP: % of installed capacity that
will reliably reduce peak system demand

Relative performance of micro-CHP and community scale

(Next) Influence of changing patterns of thermal demand



Input data time-step assumptions

Hourly Data Five Minute Data
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Carbon emissions reduction is overestimated by analyses using coarser temporal
precision by up to 50%, and economic case overestimated by around 10%.

Coarser precision overestimates export of low-carbon electricity, and
underestimates import of high-carbon grid power.
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SOFC for DG In UK

Sensitivity of optimum system size to
installed cost per kW

Ceres Power, a SOFC tech.
company (& Imperial spin-out)
recently won the Carbon Trust 6000
innovation award in the UK.

: ~ Optimum (Minimum)
SOFC has the potential for a Lifetime Lifetime Cost of SOFC

relatively low cost/kW installed [RSESIg() pacity

Fuelled by natural gas or 3

Carbon-efficient technology, Obt G .

very low NO,, very low SO,
<_stack (kW

capacity range (1kW — 1MW)

200 400 600 800 1000 1200 1400 16(9)

SOFC base cost per kW installed (E/kW)

Cost-optimal size for residential applications is
roughly 0.5 kWe, for capital cost of £800/kWe



21

DG generally has environmental benefits, but
modelling helps reveal perverse effects...

Buyback Price vs CO2 Reduction for 1.1kW Stirling Engine (with 5kWh/h
heat dump possible)
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If heat can be wasted to exhaust by micro-CHP, then it is often
economically optimal to generate electricity to meet onsite loads and
export to the grid, and to dump some of the heat generated. Wasted
heat implies higher carbon emissions



Electricity Buyback (export) Prices
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Ramp Constraints
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Influence of thermal demands on micro-CHP

Space
Heat Demand (kW)

Case 1: Conventional Central Heating
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Conclusions

 Broadly, on DE
— Technology options are abundant, and improving

— ‘System approach’ appropriate — demand/supply, infrastructures, people,
markets...Active networks and DSM will be an important aspect in future
distribution network and DG penetration scenarios.

— Plenty of barriers: technical, market, regulatory, ...

 Micro-CHP
— Economic and environmental benefit... depending on...

— Economics and environment aren’t everything. Space, quality of service,
etc

— Rough and tough technology may be better than highly optimised

* Interesting questions:-
— How do you quantify and model uncertainty in the new DE environment?

Eg portfolios, real options...
icept

— Technical and economic questions about infrastructure transition
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