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Presentation outline

• What is Decentralised Energy?

• Decentralised Energy at Imperial

• Why interest in DE?

• ICEPT’s work: illustrative examples on micro-CHP

• Conclusions
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Source: based on Ofgem(2002)
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With decentralised energy
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Importance of networks, components and people

One vision of the future of power systems  (analogy to 
internet evolution:-

Source: Rebecca Willis. grid 2.0 the next generation. Green Alliance, 2006
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Decentralised Energy components
Source: adapted from Mariyappan (2003)

(a) Power/heat conversion (both grid-connected and off-grid…)

Fossil fuelled (some with potential for bio-fuel substitutes)
• Relatively large scale, conventional technology, eg:

– Combined-Cycle Gas Turbine (35 MW – 400 MW)
– Internal Combustion Engines (5 kW – 10 MW)

• Smaller scale, eg:
– Stirling Engine (1 kW – 10 kW) 
– Microturbines (35 kW – 1 MW)

• Fuel Cells: Solid Oxide or Proton Exchange (250kW– 5MW; 1kW–250kW) 

Renewables, eg:
• Small Hydro; Micro Hydro (1 MW – 100 MW; 25 kW – 1 MW)
• Wind Turbines(200 Watt – 5 MW, to GW arrays)
• Photovoltaic Arrays (20 Watt – 100 kW)
• Biomass, e.g. based on gasification (100 kW – 20 MW)

(b) Energy storage devices

(c) Demand side: information systems, intelligent control

(d) Associated infrastructures (notably active electricity distribution networks)
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Decentralised Energy at Imperial
• Strong technology programmes in many departments (eg Fuel Cells, PV, 

wind, bioenergy, waste-to-energy, …)

• Department of Electrical and Electronic Engineering: strong group on power 
system control, DG integration and future of networks

• Centre for Energy Policy and Technology (ICEPT): focus on techno-economic, 
environmental and policy analyses of emerging energy options (eg H2, fuel 
cells, bioenergy, building integrated and off-grid renewables, and 
decentralised energy specifically) 

• Particular areas of interest to ICEPT
– Modelling approaches, and sensitivities of optimum design to economic, market and 

environmental factors
– Demand-Side participation
– Micro-Grids and community heat networks
– Small scale waste to energy systems (eg contacts with Ebara corp gasification)
– Valuation and risk-management of decentralised energy investments
– Transitions to DG power systems and scenarios
– Policy aspects
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Why interest in Decentralised Energy (globally)?
• Technology

– New, smaller, conversion devices
– Can help overcome T&D network constraints
– Stimulate development of ‘active’ networks

• Environment, economics
– Some options inherently low carbon (eg renewables)
– Can facilitate use of cleaner fuels (eg local wastes or biomass)
– Avoidance of transmission losses
– Opportunity to capture ‘waste’ heat for local heat loads
– Facilitate closer end-user engagement with energy
– Contribution to wider transition to low carbon future…

• Economics, commercial
– Low capital, fast revenue stream = lower risk modular investments
– Value of flexibility, adaptability and diversity in a competitive market
– Integration of electricity, gas & heat suppliers/markets
– Underlying need for new power investments, globally

• Security of supply
– Possible improvement in power quality and security of local supply

*

*
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WADE (2003)
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Constraints facing Decentralised Energy (in UK)
• Current market structures and rules 

• Some high technology costs

• High gas prices

• Planning and connection constraints and public perceptions

• Network integration: capacity to accept is limited and not 
always where needed
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Growth in electricity generation from renewable 
sources since 1990 (Source: adapted from DUKES 2002 – 2005)
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Market size - Global DG capacity (< 10 MW) by 
market segment

• Possibly very significant 
shift in emphasis on the part 
of utilities to distributed 
power

• Large DG growth expected 
in industrial applications and 
extended electrification

• DG penetration in 
commercial and residential 
is lower, but characterised 
by a large number of smaller 
units

Key Findings

Source: Imperial College / E4tech Ltd
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Residential Micro-CHP

• Stirling engine, ICE, Solid Oxide Fuel 
Cell, PEM Fuel Cell

Source: WhisperGen

Source: Hexis

Source: Ballard

Source: Baxi
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System Diagram
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Stack and BOP model
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Optimisation Model Applications

• How to model residential CHP applications

• Key economic drivers for SOFC-based technology

• Influence of ramp constraints on economic and 
environmental outcomes

• Synthesise a least cost operating strategy

• How best to meet thermal demand (eg value of thermal 
storage)

• Capacity credit of micro-CHP:  % of installed capacity that 
will reliably reduce peak system demand

• Relative performance of micro-CHP and community scale

• (Next) Influence of changing patterns of thermal demand
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Input data time-step assumptions
Hourly Data Five Minute Data
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Carbon emissions reduction is overestimated by analyses using coarser temporal 
precision by up to 50%, and economic case overestimated by around 10%.  

Coarser precision overestimates export of low-carbon electricity, and 
underestimates import of high-carbon grid power.
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SOFC for DG in UK

• Ceres Power, a SOFC tech. 
company (& Imperial spin-out) 
recently won the Carbon Trust 
innovation award in the UK.

• SOFC has the potential for a 
relatively low cost/kW installed

• Fuelled by natural gas or 
hydrogen rich fuel

• Carbon-efficient technology, 
very low NOx, very low SOx

• Research underway across the 
capacity range (1kW – 1MW)

Sensitivity of optimum system size  to 
installed cost per kW

Cost-optimal size for residential applications is 
roughly 0.5 kWe, for capital cost of £800/kWe
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DG generally has environmental benefits, but  
modelling helps reveal perverse effects…

If heat can be wasted to exhaust by micro-CHP, then it is often 
economically optimal to generate electricity to meet onsite loads and 
export to the grid, and to dump some of the heat generated.  Wasted 
heat implies higher carbon emissions

Buyback Price vs CO2 Reduction for 1.1kW Stirling Engine (with 5kWh/h 
heat dump possible)
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Electricity Buyback (export) Prices

Current baseline cost
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Ramp Constraints
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Influence of thermal demands on micro-CHP
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Case 1: Conventional Central Heating
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Case 4:  3kW Underfloor Heating System
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Conclusions
• Broadly, on DE

– Technology options are abundant, and improving
– ‘System approach’ appropriate – demand/supply, infrastructures, people, 

markets…Active networks and DSM will be an important aspect in future 
distribution network and DG penetration scenarios.

– Plenty of barriers: technical, market, regulatory, …

• Micro-CHP
– Economic and environmental benefit… depending on…
– Economics and environment aren’t everything.  Space, quality of service, 

etc
– Rough and tough technology may be better than highly optimised

• Interesting questions:-
– How do you quantify and model uncertainty in the new DE environment? 

Eg portfolios, real options…
– Technical and economic questions about infrastructure transition
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