Imperial College London

Energy and Green House Gas Mitigation Technologies Japan Society for the Promotion of Science-Imperial College London-University of Tokyo Symposium on Climate Change

Thursday 28th and Friday 29th September 2006

Imperial College London, South Kensington Campus, London SW7 2AZ

Imperial College London

Novel Solvents for CO₂ Capture & Separation

Energy & Green House Mitigation Technologies Japan Society for the Promotion of Science Imperial College, 29 September 2006

George Jackson Department of Chemical Engineering Molecular Systems Engineering/Centre for Process Systems Engineering

Outline

- Molecular Systems Engineering
- Advanced thermodynamic modelling (SAFT)
- Separation and Capture of CO₂ in Natural Gas
 - ✓ Chemical adsorption (amines)
 - ✓ Membranes
 - Physical solvents (hydrocarbons?)
- Thermodynamics and Fluid Phase Equilibria
 - Methane, hydrocarbons, and carbon dioxide
 - ✓ Validating the SAFT model
- Process Modelling
 - ✓ Design of separation process
 - ✓ Optimisation of process: maximise gas sales
- Conclusions/Future Challenges
 - \checkmark Couple CO₂ separation with enhanced oil recovery (EOR)
 - ✓ Double benefit: EOR and CO_2 sequestration
 - \checkmark Examine post combustion CO₂ capture

Research Team

Molecular Systems Engineering (MSE)

Emmanuel Keskes

Dr Claire S Adjiman Dr Amparo Galindo Prof George Jackson

Sponsor: Schulmberger Cambridge Research

Molecular Systems Engineering

Model-based process and molecular engineering

Statistical Associating Fluid Theory (SAFT)

- Original Theory Chapman, Gubbins, Jackson, Radosz, Fluid Phase Eq., <u>52</u>, 31 (1989); Ind. Eng. Chem. Res. <u>29</u>, 1709 (1990)
- SAFT-VR variable range potentials (1997) Gil-Villegas, Galindo, Whitehead, Mills, Jackson, Burgess, J. Chem. Phys., <u>106</u>, 4168 (1997)
- Numerous other incarnations (PC-SAFT etc.) Müller, Gubbins, Ind. Eng. Chem. Res. <u>40</u>, 2193 (2001) Economou, Ind. Eng. Chem. Res. <u>41</u>, 953 (2002)

(1989-90)

© Imperial College Londor

© Imperial College London

• Nonspherical molecules (chains)

© Imperial College London

- Nonspherical molecules (chains)
- Association (hydrogen bonding, chem. equil.)

© Imperial College London

CO₂ Separation and Capture

- Wellhead natural gas can contain 30-70% CO₂
- Large throughput:

100-1000 MMSCFD CO₂ 30-700 MMSCFD

• Typical power station:

11 MM tonnes CO₂/year CO₂ 570 MMSCFD

How to best separate such large volumes of gas?

• What is best option for sequestering CO₂?

CO₂ Separation and Capture Standard technologies

- Amine extraction chemical association. High selectivity >99%, but energy intensive, bulky, and toxic (ecological concerns). Not appropriate for large levels of CO₂.
- Membranes (polymers) physical separation. Compact and large throughput, but typically less selective (5-20% CO₂ in product stream). Physical/chemical deterioration can occur.

Possible alternative

Hydrocarbon solvents – physical absorption.
Cheap, tunable selectivity, less energy intensive.

Thermodynamics and Fluid Phase Behaviour Carbon dioxide CO₂ (quadrupolar)

Methane and higher hydrocarbons (non-polar)

methane

© Imperial College London

Thermodynamics and Fluid Phase Behaviour Fluid phase behaviour of CH₄ in higher alkanes

methane + *n*-hexane

Liquid-liquid immiscibility above ~ 5 bar McCabe, Gil-Villegas, Jackson (1998)

Thermodynamics and Fluid Phase Behaviour Fluid phase behaviour of CO₂ in higher alkanes

carbon dioxide + n-alkanes

Varying degrees of immiscibility in fluid Blas and Galindo (2002) **Thermodynamics and Fluid Phase Behaviour**

Fluid phase behaviour of CO₂ and CH₄ in higher hydrocarbons

© Imperial College London

Thermodynamics and Fluid Phase Behaviour Absorption of CO_2/CH_4 in hydrocarbon solvent

carbon dioxide + methane + *n*-hexadecane Gas stream *K_gas*=*y*(CO₂):*y*(CH₄)=3:1 Overall selectivity in *n*-hexadecane *K_total* > 3 Keskes, Adjiman, Galindo, Jackson (2006) recorrectore

Thermodynamics and Fluid Phase Behaviour Absorption of CO_2/CH_4 in hydrocarbon solvent

carbon dioxide + methane + *n*-hexadecane Gas stream y(CO₂):y(CH₄)=3:1 Temperatures ~ 300 K Pressures > 5 bar Keskes, Adjiman, Galindo, Jackson (2006) reference

Thermodynamics and Fluid Phase Behaviour Validation of theory with experiment

Keskes, Adjiman, Galindo, Jackson (2006) rial College Londo

CO₂ Separation and Capture from CH₄ Process Design

• Find the design

- equipment size,
- operating conditions,
- solvent: which alkane? alkane mixtures?

that gives the best economic performance, given feed, purity and environmental constraints.

- Process and solvent should be designed simultaneously.
- Require accurate description of thermodynamics at high pressure.

CO₂ Separation and Capture from CH₄ Process Achitecture

Keskes, Adjiman, Galindo, Jackson (2006)

CO₂ Separation and Capture from CH₄ Process Optimisation - Objective

The objective is to maximise the profit of the separation plant:

Maximise (Profit NPV = Natural Gas Revenue - Total Separation Costs)

or

Minimise (Lost Revenue for CH₄ in CO₂ Stream + Total Separation Costs)

- Natural gas revenue = Present value of natural gas annual sales
- Total separation cost = CAPEX + Present value of OPEX

Assumptions:

- Fixed interest rate = 5%
- Fixed gas price = 10 USD / Millions BTU
- Project life is 15 years

Keskes, Adjiman, Galindo, Jackson (2006) rial College London

CO₂ Separation and Capture from CH₄ Process Optimisation – Variables & Constraints

Optimisation Variables

n-alkane solvent C _n H _{2n+2}	n (real) ≤ 14
Recycling pressure	P1
Absorption pressure	P0
Solvent recirculation rate	F_solvent

Main Optimisation Constraints

Natural gas purity spec > 97% (mol/mol)

Absorber height < 50 m

Tower cross section $< 30 \text{ m}^2$

Liquid temperature > 10K + melting of pure solvent

Keskes, Adjiman, Galindo, Jackson (2006) rial College Lond

CO₂ Separation and Capture from CH₄ Case-Study: Grissik (Indonesia) - Air Liquide

CO₂ Separation and Capture from CH₄ Process Optimisation - 30% CO₂ Feed

Amount of CO ₂ in the Feed (mol/mol)	10%	30%	50%	70%
Natural Gas Sales		1829		
Total Separation Cost		82		
CH ₄ losses in the CO ₂ outlet		107		
Total Operating Cost		42		
Total Capital Investment		40		
CH ₄ Recovery		94.5%		
CO ₂ Recovery		93.2%		
CO ₂ Stream Purity		87.9%		
n-alkane solvent C _n H _{2n+2}		14		
Absorber Pressure (MPa)		4.80		
Recycling Tank Pressure (MPa)		1.99		
Solvent Recirculation Flowrate (100mol/s)		8.6		
Absorption Column Height (m)		30.0		
Absorption Column Section (m ²)		14.5		

Table: Process economics, control variables and absorber dimensions for 4 feed compositions (costs are in MMUSD-2005, Million US dollar bases on 2005 figures)

Keskes, Adjiman, Galindo, Jackson (2006)

CO₂ Separation and Capture from CH₄

Process Optimisation – Range of CO₂ Feeds

Amount of CO ₂ in the Feed (mol/mol)	10%	30%	50%	70%
Natural Gas Sales	2400	1829	1314	793
Total Separation Cost	50	82	96	114
Cost of CH ₄ losses in the CO ₂ outlet	88	107	69	36
Total Operating Cost	27	42	50	61
Total Capital Investment	23	40	46	53
CH ₄ Recovery	96.5%	94.5%	95%	95.6%
CO ₂ Recovery	73.2%	93.2%	97.1%	98.7%
CO ₂ Stream Purity	69.6%	87.9%	95.1%	98.1%
n-alkane solvent C _n H _{2n+2}	14	14	14	14
Absorber Pressure (MPa)	4.72	4.80	4.75	4.83
Recycling Tank Pressure (MPa)	1.56	1.99	1.94	1.93
Solvent Recirculation Flowrate (100 mol/s)	6.4	8.6	10.4	12.7
Absorption Column Height (m)	30.1	30.0	30.1	30.0
Absorption Column Section (m ²)	8.8	14.5	16.1	17.1

Table: Process economics, control variables and absorber dimensions for 4 feed compositions (costs are in MMUSD-2005, Million US dollar bases on 2005 figures)

Keskes, Adjiman, Galindo, Jackson (2006)

CO₂ Separation and Capture from CH₄ Future needs

• Application of the Kyoto protocol:

- CO₂ is captured from power plants
- And then stored in Oil / Gas reservoirs
- Enhance the production of Oil or Gas

Increasingly concentration of CO₂

- Time = $0 \Rightarrow CO_2 = 0 30\%$
- Time = 5 years \Rightarrow CO₂ = 70%

• With increasing CO₂ content

- Separation cost increases
- Revenue from NG sales decreases
- Production will be terminated as soon as separation becomes too expensive

⇒ Improved separation process needed:

- to maximise revenue over project life
- to deal with variable feed
 - Concentration: CO₂ content = 0 70%
 - Pressure = 5-10 MPa

Downhole Separation

© Imperial College London

CO₂ Separation and Capture from CH₄ Conclusions

- Hydrocarbons preferentially absorb CO₂ Physical solvent
- Low temperatures (~25°C) High pressure (> 5 bar)
- Higher homologous lead to enhanced selectivity
- Advanced thermodynamic modelling (SAFT)
- Design and optimised CO₂/CH₄ separation process
- Process economically viable
- Very flexible for different CO₂ contents of feed

Future Direction

- Critical comparison amines and membranes
- Integrate process with EOR (and post-combustion capture)
- CO2 as a reservoir fluid Downhole separation

Thank You!