Imperial College London

Energy and Green House Gas Mitigation Technologies Japan Society for the Promotion of Science-Imperial College London-University of Tokyo Symposium on Climate Change

Thursday 28th and Friday 29th September 2006

Imperial College London, South Kensington Campus, London SW7 2AZ

CO₂Capture and Afforestation to Mitigate Global Warming

Koichi Yamada

Technological Options for 550 ppmv Stabilization

Cost Estimation of Geological CO₂ Sequestration

IEA Report (presented at 1st CSLF)

CO ₂ Capture	15 – 40 \$/t-CO ₂	90%
Total	17 – 45 \$/t-CO ₂	

Prospective cost of CO₂ Separation & Capture

CO₂ Capture Costs by Different Methods

Chemical absorption		PTSA	Membrane		
MEA	KS-1	NewKS-1		Separation	
1	0.82	0.78	2.4	1.2	

By N.Imai(GHGT-7)

Cost Estimation of Chemical Absorption

Processes

	1	2	3	4
Phase	Present	←	←	Future
Place	Japan	<u> </u>	Norway	€
Source	Coal P.P.	Blast fur. (3Mt- Fe/y)	NG	←
Capacity (Mt-CO2/y)	1.0	1.0	1.3	1.3
Initial CO ₂ (%)	14	23	8.5	8.5
Cost (¥/t-CO ₂)				
Fixed at 10%/y	1,000	1,000		
Variable	3,070	5,870		
Total	4,070	6,870	6,510	2,960

CO₂ chemical absorption and compression Energy (Coal fired power plant)

1. Present energy consumption (GJ/t-C)

Pressure loss of absorbent

Heating of	CO ₂ desorption reaction 6.7 (58%)	0.5	CO ₂ com-
absorbent		(4%	pression
2.6 (23%))	1.7 (15%)

- Present separation & compression energy = 11.5 GJ/t-C
- 2. Consumption Energy
 - Energy of Coal = 41 GJ/t-C, Now 28%
- 3. Energy efficiency
 - Theoretical separation energy = 0.7 GJ/t-C
 - Present separation energy = 9.8 GJ/t-C

Reduction of reaction energy is a key issue of success in carbon sequestration !

$$\left(\frac{11.5}{41.0}\right)$$

$$\frac{0.7}{9.8} = 7\%$$

Desirable characteristics of absorbents:

- 1. Regeneration with low energy use
- 2. High absorption/desorption rate and regeneration under low temperature
- 3. High loading rate of CO2
- 4. Low volatility, viscosity and high stability

Solvent A : Newly-developed absorbent in 2004

Development Step of New Absorbent

Prospect for CO₂ Separation Cost of Membrane Separation

CO₂ Molecular Gate Membrane

Synthesis and Chemical Structure of Hydroxyl PAMAM Dendrimer

R&D Subjects for Cost Reduction

- 1 Chemical absorption
 - New absorbent

(low reaction heat, high loading, high stability, low viscosity)

- Reduction of equipment size
- 2 Membrane separation
 - High performance membrane (high permeability , high selectivity , high stability)

Development of Greenhouse-gas Sink/Source Control Technologies through Conservation and Efficient Management of Terrestrial Ecosystems

Source control

Land resources management and the empowerment for local community

Mitigation of CH₄, N₂O emission

Afforestation in tropical forest

Construction of integrated platform and common information system for promoting the research project

Sink/Source control in tropical peat swamp

Ecosystem management in shifting-cultivation region

Budget; ¥1,3B (2003~2007)

Project Leader K. YAMADA

Afforestation in arid land

Development of Greenhouse-gas Sink/Source Control Technologies through Conservation and Efficient Management of Terrestrial Ecosystems

Objectives

Establishment of GHG sink/source control Technologies in Terrestrial ecosystems.

These technologies should connect with concrete options for policy maker after 2nd period of Kyoto Protocol ($2013 \sim$).

Distribution of tropical peat swamp 20Mha,bare land-25% in SE Asia

Tropical peat swamp at southern Thailand

CO₂ fixation and emission from primary swamp forest and developed area

CO₂ emission:

24 tCha⁻¹y⁻¹

CO₂ fixation:

≈0 tCha⁻¹y⁻¹

{(12.5-8.8)+(24-2)} x 5.14 x 10⁶ + α (Palm oil plantation) = (132 + α) x 10⁶ tC

Peat swamp

After development

CO₂ reduction by changing from developed tropical peat swamp to natural peat swamp

CO₂ emission 24 t-C/ha·y Oil palm -6Natural swamp -5CO₂ reduction (24-6+5)23 (84t-CO2/ha·y)

Reduction potential: 100Mt-C/Y (5Mha)

CO₂ reduction cost using developed tropical peat swamp 1. Land rental (20years) 100,000¥/ha 2. Land preparation 130,000¥/ha 3. Seedling, plantation 40,000¥/ha

4. Others

Total

370,000¥/ha

100,000¥/ha

• compensation of palm oil income = 200,000¥/ha CO₂ reduction cost 370,000+200,000 = 1.240¥/t-C

$$\frac{1,240 \text{ // t-C}}{23 \times 20} = 1,240 \text{ // t-C}$$

$$(= 340 \text{ // t-CO2})$$

Research areas in Western Australia

地形、集水のしやすさにより植生が変化している

クリーク沿いのユーカリ林

マルガ疎林

6/2/1999

主調査地域(STM)の植生分布

Soil profile (Hardpan)

Blasting of Hardpan

ANFO爆薬によるハードパン破砕

要素技術(土壌S-1土壌構造改良技術,ハードパン破砕)

Site C, May 2003

要素技術(土壤S-1土壤構造改良技術,有効土層拡大)

Site E 全景

CO ₂ fixation efficiencies and costs						
	Site C (blasting)			Site E (soil-piling)		
Area(m ²)	140,000			15,000		
Tree No.	7,000			750		
Fixed CO ₂ (t-C)	1,050			113		
CO ₂ emission &	z cost					
	consumption	CO2 emission (t-C)	s cost (k Yen)	consumption	CO2 emissions (t-C)	cost (k Yen)
Dieseloil	11[kl]	8.2	550	1.2[kl]	0.92	60
Explosives	25[t]	5.8	800	0		
Steel fence	3.5[t]	1.2	350	1.9[t]	0.68	190
Seedlings	7,000		560	750		60
Equipment		0.8*	2,400		0.1*	540
Labor	4,000[man•h]		12,000	550[man•h]		1,650
Total		16.0	16,660		1.70	2,500
CO2 efficiency (Fixed/Emitted)			<mark>66</mark>		66	
CO2 fixation cost (Yen/t-C)		1	<mark>5,900</mark>		22,000	
(Yen/t-CO ₂)		4	<mark>4,300</mark>		6,000	

***10% of CO2 emissions by dieseloil**

CO₂ sequestration potential in Western Australia calculated by the experimental data

A.Arid land (Ann. rainfall: 200 ~ 300 mm) Assumption: i) Available water – 0.3 × 200 mm = 6 × 10⁴ t-water/km²/y ii) Growth rate – 0.5 kg-C/t-water at 1000 mm rainfall

<u>Calculation</u> $(2.5 \times 10^3 \text{ km}^2) \times (6 \times 10^4 \text{ t-water/km}^2/\text{y})$

× $(0.5 \times 10^{-3} \text{ t-C/t-water}) \times (1.1 \times 10^{6})/(2.5 \times 10^{3}) \times 20 \text{ y}$ = $6.6 \times 10^{8} \text{ t-C}$

B.Wheat belt (Ann. rainfall: $300 \sim 600 \text{ mm}$) Assumption: i) Available water – $500 \text{ mm} = 5 \times 10^5 \text{ t-water/km}^2/\text{y}$ ii) Growth rate – 0.35 kg-C/t-water at 500 mm rainfall

<u>Calculation</u> $(0.2 \times 5.4 \times 10^5 \text{ km}^2) \times (5 \times 10^5 \text{ t-water/km}^2/\text{y}) \times (0.35 \times 10^{-3} \text{ t-C/t-water}) \times 30 \text{ y}$

= <u>5.7 × 10⁸ t-C</u>

Carbon sequestration potential in W.A. = 1.2 **G t-C/20y**

Conclusion

- 1. A present CO_2 capture cost (40\$/t- CO_2) is comparable to CO_2 fixation cost by afforestation of arid land.
- 2. Future CO_2 capture cost can be reduced to less than 50% of a present one.
- 3. CO_2 reduction cost using developed tropical peat swamp is as low as $3/t-CO_2$.