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Key points
• simulation a key enabler of the first energy revolution 

(e.g. distillation, oil refining )
– complexity, interactions, systems view

• a key enabler of current energy revolution
– complexity, interactions, systems view

• new simulation technologies
– Increase efficiency of current processes plenty of scope  !
– New technologies, products, processes even more so    !

• some examples 
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Simulation & Energy
• 1950’s LP, tray-by-tray distillation calculations, …
• 60’-70’ Industrial simulators (Chiba, Esso, Monsanto, BP…)

First energy crisis  - cannot do coal, solids, … !!

• 80’s Specialisation (SimSci, Aspen, Hysis, Chemshare,…)
• 90’s Consolidation (little innovation, 70’s architecture)

• 00’s Emergency of dynamics,  Sophisticated modelling 
/solution environments, distributed architecture, new 
capabilities

e.g. gPROMS (Process Systems Enterprise )

New energy systems  - far greater complexity, across multiple scales 



Multiscale example
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Courtesy of Mitsubishi Chemical Company



Simultaneous solution
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Crystal size distribution

• Accurate prediction of crystal size  
distributions 

• Validated on full scale industrial plant 

• Much improved operation, design

60% less energy !

Incorporate geometry

Scale-up / Scale-down

General way to model 

and solve multiscale

CFD + simulation problems
Courtesy of Mitsubishi Chemical Company



Distillation
very old (sake, whisky, …),    pervasive 
extensively optimised
~40% of energy used by Chemical Process Industries 

heat

cool

Traditional Heat Integrated

Courtesy of Process Systems Enterprise Ltd



Heat Integrated Distillation 
Columns - HIDiC

BTX case study:
Heat Integrated 56% of conventional +  compact !

column heating / cooling 

BUT difficult to start-up & control; very narrow operating window

detailed model, dynamic analysis & control optimisation great performance !





Courtesy of Process Systems Enterprise L



Model validation
• Model + Data parameters
• Statistics – Lack of fit, confidence regions, …
• Model-based Design of Experiments 

Model 

General rig scheme
Water condensersWater condensers

ReceiverReceiver

Packed Packed 
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injectioninjection pumppump

Sampling Sampling 
systemsystem

Temperature Temperature 
control systemcontrol system

Compressed Compressed 
air stirrerair stirrer

TachometerTachometer

Metal Metal 
band band 

heatersheaters
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gas bottlegas bottle
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LemieuvreLemieuvre, M. (2002). Biodiesel process , M. (2002). Biodiesel process study:experimentsstudy:experiments and simulations. MSc Thesis, Imperial College, Londonand simulations. MSc Thesis, Imperial College, London
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Biodiesel process 
development

Best 

data 
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Fuel cell
Solid Oxide Fuel Cell
(SOFC) membrane

High fidelity models of physics, 
chemistry and electrochemistry 

Courtesy of Process Systems Enterprise Ltd



Model validation :
Closed-loop experiment

• A novel experimental technique –
designed by PSE for use during 
FC development

• Valuable source of complementary 
data

• Ensures uniform conditions across 
the cell and allows full control of the 
fuel utilisation

• Sufficiently accurate to identify 
electronic leakage at low current 
densities

• The flow-through and closed loop 
data are processed simultaneously 
using gPROMS parameter 
estimation

Electrolyte

Cathode

Anode

Air channel

Fuel channel
(H2 ,H2O, CO, CO2, CH4, N2) 

A

V R

Buffer tank

Air blower

N2 bag

O2 sensor



Fuel cell
SOFC stack - mass and heat transfer at gas-solid interfaces

- effect of air & gas geometry and flow distribution
- heat losses
- dynamic response

Power density

Temperature contours       

Combined solution allows analysis of complex channel geometries



Fuel cells - a modular library

• An integrated strategy for FC modelling
– I.  solid membrane
– II.  experiments, data processing, model validation
– II.  fuel cell/stack
– III. power plant
– IV. electrical network

• …aiming to achieve
– model consistency
– model re-usability

• …across the FC development lifecycle
– from model validation to control system design

• Generally applicable to all types of FC
– SOFC, PEMFC, DMFC, …



Conventional steel-lined LNG 
storage tanks  
• Capital-intensive design decisions

– scale of equipment 
– adverse operating conditions

• Operation is transient
– difficult to “guess” the optimal solution 

(or even a feasible one)
• Underlying physics relatively well 

understood
– models can be fully predictive
– there is no need (and little scope) for 

experiments
• Modelling can provide important support 

to design decisions
– sometimes a single YES/NO question needs to 

be answered
– potential financial impact very significant

LNG Tank

Ground base



Modelling objectives

• Predict
– heat gain from 

environment
– dynamics of tank 

“breathing”

• so as to optimise…
– amount of insulation
– power supply to 

electric blanket
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The gPROMS LNG 
storage tank model 

• Mass & energy balances of the 
liquid in tank

• Rigorous dynamic 2d model of 
heat conduction in 
– all component layers 
– the ground base

• Moving liquid surface
– due to loading, unloading, 

evaporation
– affects heat transfer 

characteristics
• Mass/heat transfer at the liquid 

surface
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Selected results
Liquid height and gas purge over 3 cycles  

operation
Heat gained by liquid



All-concrete LNG tanks 
(ACLNG)
• Do not include the steel lining
• Save

– cost of steel
– ~25% off construction schedule

• Not really a new idea: mentioned in 
academic papers from the 1980s

– Imperial’s Civil Engineering Department
• Renewed interest in the industry in the 

2000s

• Key issue: management of risk 
associated with LNG permeation 
through concrete



Design of all-concrete LNG tanks
Integrated experimental/modelling procedure
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In summary
• Most energy applications involve complexity, interactions, trade-offs, 

risk a whole system approach

• Modelling-Simulation-Optimisation is a key enabler

• A new generation of methods and software can handle vastly 
increased complexity, with ease of deployment
– High fidelity, Nonlinearities, Interactions, Validation, Multiscale,  

Dynamics, Optimisation, …

• Many successful applications on a wide range of energy problems:

– Dramatic improvements of “traditional” energy-hungry designs, 
operations

– Development of radically new concepts, equipment, process designs

– Detailed analysis often reveals and exploits counter-intuitive solutions



Lean & green



www.imperial.ac.uk/energyfutureslab

Thanks for your attention



Energy efficiency - a primary 
source ?



Transport :  ~ 50% of oil

2004 planned/approved
EU 37 44 (2008)
Japan 45 48 (2010)
Canada 25 32 (2010) proposal
China 29 37 (2008)
USA 24 no target
California ? 36 (2015)
2004 Toyota Prius 55

Average fleet economy, cars & light trucks (mpg)

US fleet as efficient as EU TODAY ~3   MBD
Kazakhstan output in 5-10 yrs ~2   MBD 4MBD
US imports from Gulf ~2.7MBD
BP entire production ~4   MBD



Transport :  where does half 
the world oil go?

Oil petrol wheel mass
turning moving 

100       94 12.2 0.6  passenger
11.6 car

1/3 aerodynamic drag
1/3 rolling resistance
1/3 acceleration/brakes

heat, noise !

Volkswagen Golf – over 30 years x 1.5 fuel efficiency
x  2   weight

1 unit of “person transport” energy = 100/0.6 = 166 units of oil energy
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