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',ethane Extraction from Coal Seams: Wwell Technology
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nhanced Coalbed Methane Recovery (ECBM)

two principal methods of ECBM, namely N, and CO, injection
(inert gas stripping and displacement sorption respectively)

injection of nitrogen reduces the partial pressure of methane in the

reservoir, thus promotes methane desorption without lowering the total
reservoir pressure

coal can adsorb approximately twice as much CO, by volume as
~_methane, therefore, the assumption has been that the CO, injection
wstores 2 moles of CO,for every mole of CH, desorbed.
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Strength, Elastic and Flow Properties of Coal

Coal structure is highly elastic

Weak
Reservoir | Sandstone| Limestone
Sandstone

Coal
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Young’s
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Coal permeability is
» Anisotropic

» Highly stress dependent
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-Stress Effects and Permeability
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tPore Pressure Effects, Matrix Deformation and Permeability

Matrix Shrinkage or Swelling
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Stress and Pore Pressure Effects, Permeability
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‘Field CO, Injection Pilots

= CO, induced matrix swelling can have a severe impact on
Injection well permeability and injectivity

= A reduction of over two orders of magnitude in injection well
permeability was reported in the Allison CO,-ECBM pilot in the
*San Juan Basin
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Permeability Model for CO, Enhanced
Wethane Recovery and CO, Storage
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ETSIM2 — Imperial College CO, ECBM Simulator

™ A dedicated ECBM simulator: 3D, two-phase,
multi-component (CH,, CO, and N,)

2@ Mixed gas diffusion

5 Mixed gas sorption - Extended Langmuir equation

8% Accounts for the effects of matrix shrinkage/swelling on
cleat permeability

.
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JCOAL Yubari Field Pilot, Japan

IW-1
@

"L Micro-pilot CO, huff-puff test (well IW-1 only)
 Pre-injection production (~ 60 days)
 CO, injection (7.5 hours) — 7.4 tones injected
pe Shut-in (21 days)
» Post-injection flow back (30 days)

0O, injection tests (wells IW-1 & PW-1)
® 1 October — 20 December 2004
e 20 August — 30 October 2005

flooding (wells IW-1 & PW-1)
BRre-N, flooding CO, injection (11 April — 10 May 2006)
- >=flooding (11 — 19 May 2006)
.' * Post-N, flooding CO, injection ( July - August 2006)
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CO, Injection and N, Flooding Test
‘Fleld Injection and Gas Production Rates

Multi-well test: Production and injection rates
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Model Prediction vs Field Data:
Pre- and Post- N, Flooding CO, Injection Rates
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= N, flooding temporarily improved CO, injectivity,
which declined quickly back to the pre-flooding level
. (-~ 3tones/ day) after two days.
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Horizontal Well to Improve Well Injectivity

© Able to access a larger reservoir area than vertical wells

. permeability reduction and injectivity loss in a CO,-ECBM
nd/or CO, storage project

orizontal wells in coal seams
Nave the added advantage that RATE o 52
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A Three-Well Pattern

Horizontal vs 5-spot pattern
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by a factor of 5 in the first year
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‘Estimating Changes in Permeability During Enhanced
ecovery using CO, Enriched Flue Gas

|Langmuir isotherm
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i Simulation of CO, Storage and ECBM Recovery
Using Horizontal Wells

= Pure CO i J
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Cumulative CH, Production/Recovery Factor

* ! Primary production from all the wells in the first year
~65% recovery

=Blncremental recovery for the next three years:

Primary recovery
L Pure CO, : 10%, no improvement over primary
5% CO,/25% N,: 27%
80% CO,/50% N,: 33%

75% CO2/ 25% N2
—— primary
—pure CO2

50% CO2/50% N2

Cumulative CHs production
Methane recovery (%)
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Trade-Off Between CH, Recovery Factor and

sas Quality

= Gas quality deteriorates with increasing N, content in the gas
Injectant

SFFor the 75% CO, / 25% N, mixture, CH, mole fraction stays
® above 50% level throughout the production period
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*Cumulative CO, Injection

=1 5.91 million m3 CO, injected over the 3-year period for CO,-ECBM

Interestingly, ~10% more net CO, could be injected/stored if the
CO, were mixed with N, at a ratio 3:1.

=y The incremental CH, production over primary stands at 2.4 million
'm?, yielding an overall CO,/CH, ratio of about 2.75:1
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. Concluding Remarks

= The 3-well horizontal well configuration was up to five
times more productive than the 5-spot vertical well pattern
. for the coal seam reservoir used in the study.

2hinjection of pure CO, into the central horizontal well, is
likely to result in only limited incremental methane
Becovery over primary recovery

‘'"The presence of the nitrogen component in the injected
jas stream is capable of significantly improving the
fficiency of enhanced methane recovery and CO, storage
Iithout compromising the CO, injection rates.

gre is, however, a trade off between incremental

ane recovery and produced gas purity due to early
dgen breakthrough.
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