
Thursday 28th and Friday 29th September 2006

Imperial College London, South Kensington Campus, London SW7 2AZ



S Durucan and JQ Shi – London,  29  September 2006

Sevket Durucan and Ji-Quan Shi

Imperial College London

CO2 Storage in Coal Seam Reservoirs:
Permeability, Injectivity, Well Configuration and the Choice of Injectant

mINING AND ENVIRONMENTAL ENGINEERING RESEARCH GROUP



S Durucan and JQ Shi – London,  29  September 2006

Outline

• Background, coal structure

• Coal permeability, well injectivity

• Imperial College permeability and CO2-ECBM model

• Field Examples

• Conclusions



S Durucan and JQ Shi – London,  29  September 2006

Underground Methane 
Drainage Practice

Coalbed Methane 
Technology

Methane Extraction from Coal Seams: Well Technology
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Coal as a Reservoir Rock
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Enhanced Coalbed Methane Recovery (ECBM)

injection of nitrogen reduces the partial pressure of methane in the 
reservoir, thus promotes methane desorption without lowering the total 
reservoir pressure

two principal methods of ECBM, namely N2 and CO2 injection 
(inert gas stripping and displacement sorption respectively)
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coal can adsorb approximately twice as much CO2 by volume as 
methane, therefore, the assumption has been that the CO2 injection 
stores 2 moles of CO2 for every mole of CH4 desorbed.
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Strength, Elastic and Flow Properties of Coal

Coal structure is highly elastic
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Pore Pressure Effects, Matrix Deformation and Permeability
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Field CO2  Injection Pilots

• CO2 induced matrix swelling can have a severe impact on 
injection well permeability and injectivity

• A reduction of over two orders of magnitude in injection well 
permeability was reported in the Allison CO2-ECBM pilot in the 
San Juan Basin
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METSIM2 – Imperial College CO2 ECBM Simulator

• A dedicated ECBM simulator: 3D, two-phase, 
multi-component (CH4,  CO2 and N2)

• Mixed gas diffusion

• Mixed gas sorption - Extended Langmuir equation

• Accounts for the effects of matrix shrinkage/swelling on 
cleat permeability
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JCOAL Yubari Field Pilot, Japan

• Micro-pilot CO2 huff-puff test (well IW-1 only)
• Pre-injection production (~ 60 days)
• CO2 injection (7.5 hours) – 7.4 tones injected
• Shut-in (21 days)
• Post-injection flow back (30 days)

• CO2 injection tests (wells IW-1 & PW-1)
• 1 October – 20 December 2004
• 20 August – 30 October 2005

• N2 flooding (wells IW-1 & PW-1)
• Pre-N2 flooding CO2 injection (11 April – 10 May 2006) 
• N2-flooding (11 – 19 May 2006) 
• Post-N2 flooding CO2 injection ( July - August 2006)

IW-1 PW-1

60 m
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Multi-well test: Production and injection rates
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Model Prediction vs Field Data: 
Pre- and Post- N2 Flooding CO2 Injection Rates
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N2 flooding temporarily improved CO2 injectivity, 
which declined quickly back to the pre-flooding level 
(~  3 tones/ day) after two days.
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Horizontal Well to Improve Well Injectivity

face cleat

butt cleat

matrix blocks

Horizontal wells in coal seams 
have the added advantage that 
they could potentially tap into the 
inherent permeability anisotropy 
of coalbeds by cutting across the 
more permeable face cleats

Able to access a larger reservoir area than vertical wells

Horizontal wells may be used to help alleviate 
permeability reduction and injectivity loss in a CO2-ECBM 
and/or CO2 storage project



S Durucan and JQ Shi – London,  29  September 2006

A Three-Well Pattern

LL
3-well pattern
(914 m x 914 m)

• Linear flow between parallel 
boreholes – a reasonable 
approximation for thin seams
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Estimating Changes in Permeability During Enhanced 
Recovery using CO2 Enriched Flue Gas
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Simulation of CO2 Storage and ECBM Recovery 
Using Horizontal Wells

Three ECBM Schemes:
• Pure CO2

• 75% CO2/25% N2

• 50% CO2/50% N2

• Primary production from all the wells in 
the  first year 

• Injection starts at year 2, with the central 
borehole converted into an injection well

LL

3-well pattern 
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Cumulative CH4 Production/Recovery Factor 

• Primary production from all the wells in the first year 
~65% recovery
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• Incremental recovery for the next three years:

Primary recovery

Pure CO2 : 10%, no improvement over primary

75% CO2/25% N2: 27% 

50% CO2/50% N2: 33%
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Trade-Off Between CH4 Recovery Factor and 
Gas Quality
• Gas quality deteriorates with increasing N2 content in the gas 

injectant

• For the 75% CO2 / 25% N2 mixture, CH4 mole fraction stays 
above 50% level  throughout the production period

• Further enrichment in N2 results in a steep decline in gas quality
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Cumulative CO2 Injection
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• 5.91 million m3 CO2 injected over the 3-year period for CO2-ECBM

• Interestingly, ~10% more net CO2 could be injected/stored if the 
CO2 were mixed with  N2 at a ratio 3:1. 

• The incremental CH4 production over primary stands at 2.4 million 
m3, yielding an overall CO2/CH4 ratio of about 2.75:1
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Concluding Remarks  

• The 3-well horizontal well configuration was up to five 
times more productive than the 5-spot vertical well pattern 
for the coal seam reservoir used in the study. 

• Injection of pure CO2 into the central horizontal well, is 
likely to result in only limited incremental methane 
recovery over primary recovery

• The presence of the nitrogen component in the injected 
gas stream is capable of significantly improving the 
efficiency of enhanced methane recovery and CO2 storage 
without compromising the CO2 injection rates. 

• There is, however, a trade off between incremental 
methane recovery and produced gas purity due to early 
nitrogen breakthrough.


