Imperial College London

Energy and Green House Gas Mitigation Technologies Japan Society for the Promotion of Science-Imperial College London-University of Tokyo Symposium on Climate Change

Thursday 28th and Friday 29th September 2006

Imperial College London, South Kensington Campus, London SW7 2AZ

CO₂ Storage in Coal Seam Reservoirs: Permeability, Injectivity, Well Configuration and the Choice of Injectant

Sevket Durucan and Ji-Quan Shi

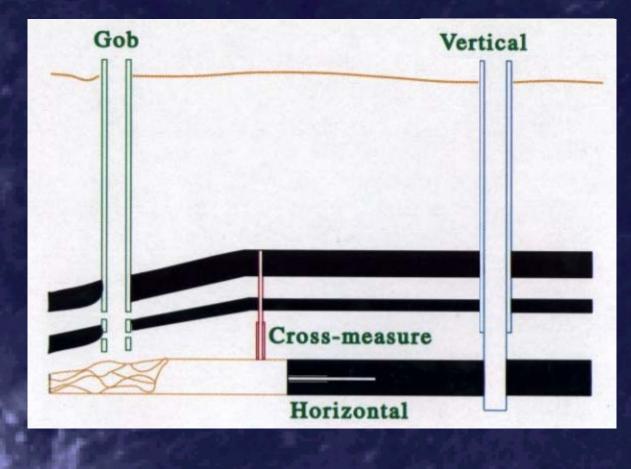
Imperial College London

mining and Environmental Engineering Research Group mERG

Outline

Background, coal structure

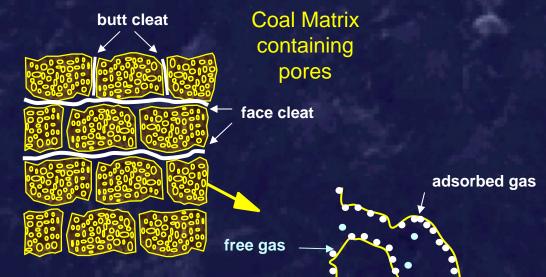
Coal permeability, well injectivity

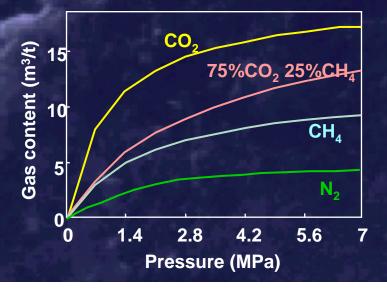

Imperial College permeability and CO₂-ECBM model

Field Examples

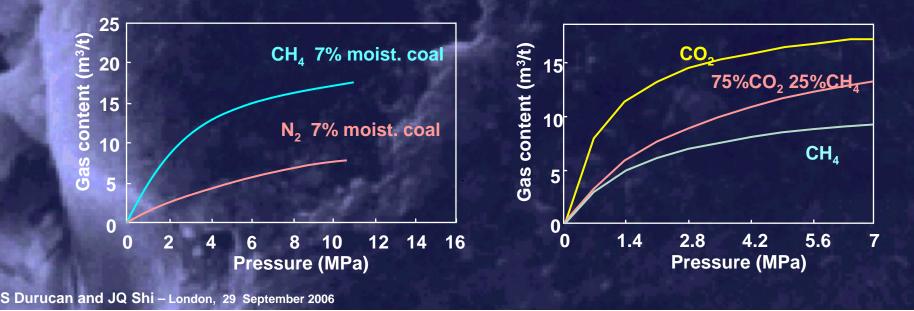
Conclusions

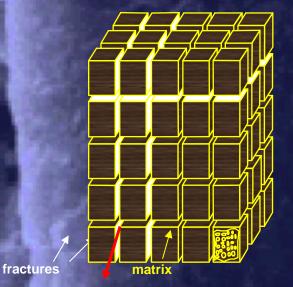
Methane Extraction from Coal Seams: Well Technology


Underground Methane Drainage Practice Coalbed Methane Technology


S Durucan and JQ Shi - London, 29 September 2006

Coal as a Reservoir Rock

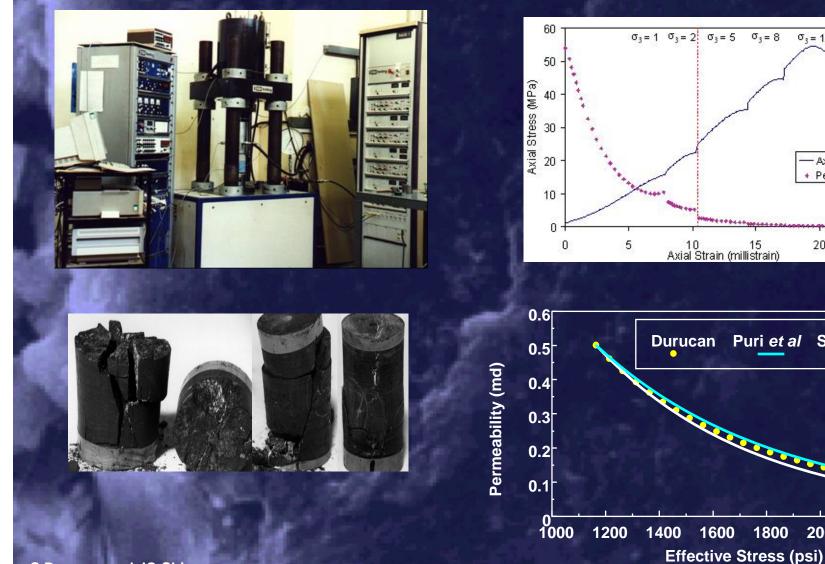

Cleat system (2mm - 25 mm)
 Pore surface area 20 – 200 m²


S Durucan and JQ Shi - London, 29 September 2006

Enhanced Coalbed Methane Recovery (ECBM)

- two principal methods of ECBM, namely N₂ and CO₂ injection (inert gas stripping and displacement sorption respectively)
- injection of nitrogen reduces the partial pressure of methane in the reservoir, thus promotes methane desorption without lowering the total reservoir pressure
 - coal can adsorb approximately twice as much CO_2 by volume as methane, therefore, the assumption has been that the CO_2 injection stores 2 moles of CO_2 for every mole of CH_4 desorbed.

Strength, Elastic and Flow Properties of Coal


Coal structure is highly elastic

Young's Modulus <i>, E</i> (GPa)	Coal (Various)	Weak Reservoir Sandstone		Limestone	Shale
	0.86 - 3.9	0.4 – 1.8	10- 20	35 - 55	5 - 70

Coal permeability is

- Anisotropic
- Highly stress dependent

Stress Effects and Permeability

25

20

15 Dermeability (mD)

5

łΟ

25

 $\sigma_3 = 8$

 $\sigma_{3} = 12$

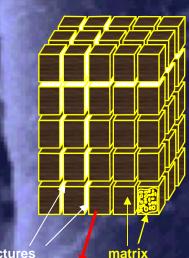
4

20

Puri et al Somerton

2000

2200

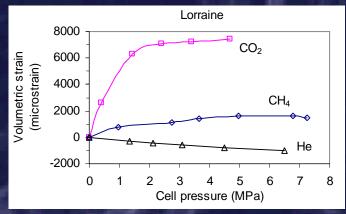

2400

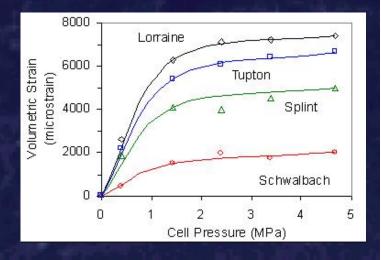
1800

Axial Stress Permeability

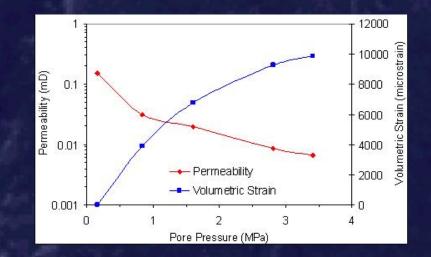
S Durucan and JQ Shi – London, 29 September 2006

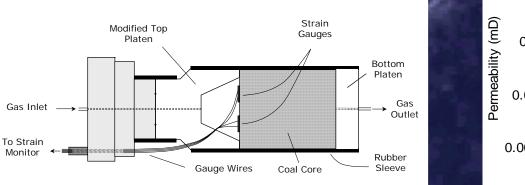
Pore Pressure Effects, Matrix Deformation and Permeability

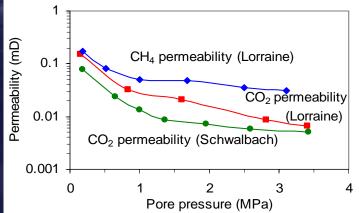



fractures

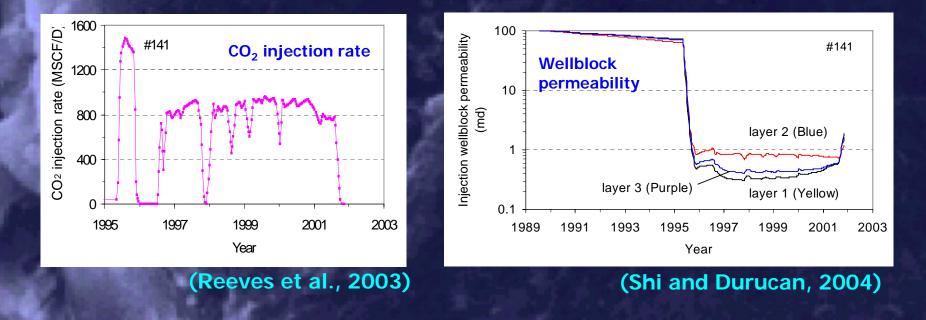
Matrix Shrinkage or Swelling






S Durucan and JQ Shi - London, 29 September 2006

Stress and Pore Pressure Effects, Permeability



S Durucan and JQ Shi – London, 29 September 2006

Field CO₂ Injection Pilots

CO₂ induced matrix swelling can have a severe impact on injection well permeability and injectivity

A reduction of over two orders of magnitude in injection well permeability was reported in the Allison CO₂-ECBM pilot in the San Juan Basin

Permeability Model for CO₂ Enhanced Methane Recovery and CO₂ Storage

$$k = k_0 e^{-3c_f(\sigma - \sigma_0)}$$

Primary recovery

$$\sigma - \sigma_0 = -\frac{\nu}{1 - \nu} (p - p_0) + \frac{E\alpha_s (V - V_0)}{3(1 - \nu)}$$

Enhanced recovery and CO₂ storage

Shrinkage/swelling term

$$\sigma - \sigma_0 = -\frac{\nu}{1 - \nu} (p - p_0) + \frac{E}{3(1 - \nu)} \sum_{j=1}^n \alpha_{Sj} (V_j - V_{j0})$$

 α_{Si} – shrinkage/swelling coefficient for gas component j

S Durucan and JQ Shi – London, 29 September 2006

 σ_{vv}

METSIM2 – Imperial College CO₂ ECBM Simulator

- A dedicated ECBM simulator: 3D, two-phase, multi-component (CH₄, CO₂ and N₂)
- Mixed gas diffusion
- Mixed gas sorption Extended Langmuir equation
- Accounts for the effects of matrix shrinkage/swelling on cleat permeability

JCOAL Yubari Field Pilot, Japan

60 m

PW-1

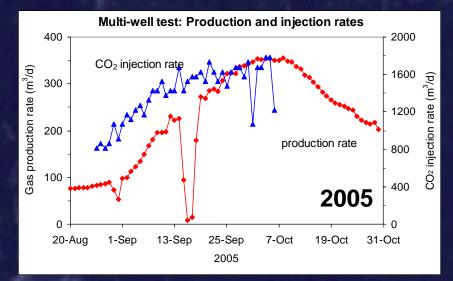
IW-1

Micro-pilot CO₂ huff-puff test (well IW-1 only)

- Pre-injection production (~ 60 days)
- CO₂ injection (7.5 hours) 7.4 tones injected
- Shut-in (21 days)
- Post-injection flow back (30 days)

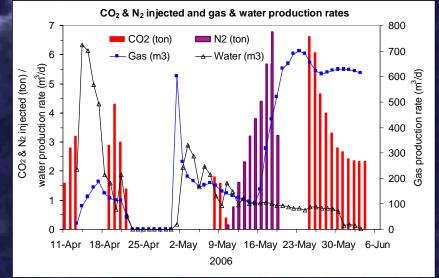
CO₂ injection tests (wells IW-1 & PW-1) 1 October – 20 December 2004

20 August – 30 October 2005

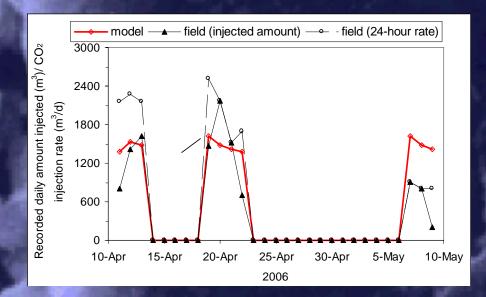


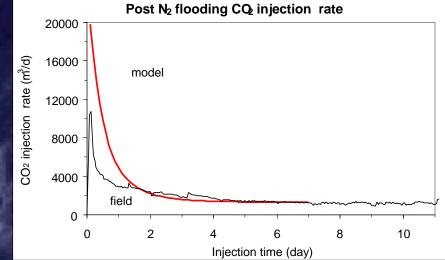
N₂ flooding (wells IW-1 & PW-1)

- **Pre-N**₂ flooding CO₂ injection (11 April 10 May 2006)
- N₂-flooding (11 19 May 2006)
- Post-N₂ flooding CO₂ injection (July August 2006)


CO₂ Injection and N₂ Flooding Test Field Injection and Gas Production Rates

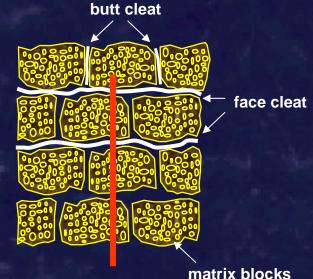
2004: • 15 days injection • 1.8 – 2.9 tones CO₂/day (1 ton = 506 std. m³)


2005:
 40 days injection
 1.7 – 3.5 tones/day


Low production rates: < 400 m³/day

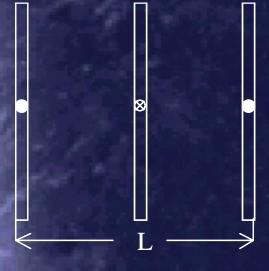
Model Prediction vs Field Data: Pre- and Post- N₂ Flooding CO₂ Injection Rates

Pre-N₂ flooding


N₂ flooding temporarily improved CO₂ injectivity, which declined quickly back to the pre-flooding level (~ 3 tones/ day) after two days.

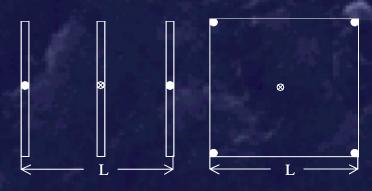
Horizontal Well to Improve Well Injectivity

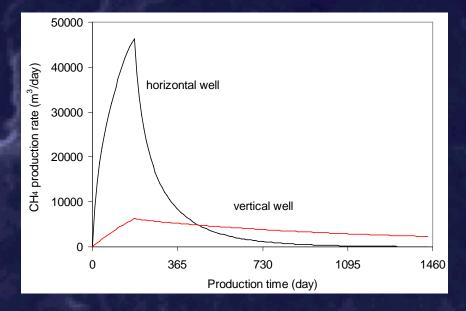
Able to access a larger reservoir area than vertical wells


Horizontal wells may be used to help alleviate permeability reduction and injectivity loss in a CO₂-ECBM and/or CO₂ storage project

Horizontal wells in coal seams have the added advantage that they could potentially tap into the inherent permeability anisotropy of coalbeds by cutting across the more permeable face cleats

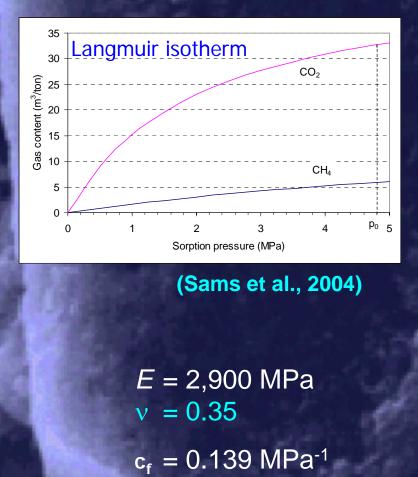
S Durucan and JQ Shi – London, 29 September 2006


A Three-Well Pattern

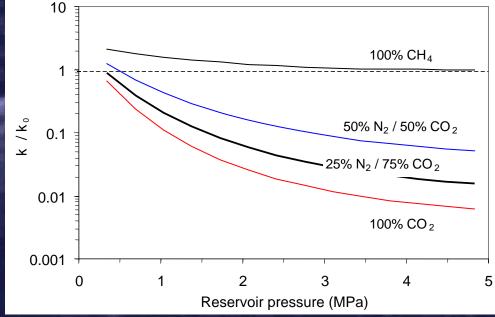

3-well pattern (914 m x 914 m)

Linear flow between parallel boreholes – a reasonable approximation for thin seams

Horizontal vs 5-spot pattern



Primary Production



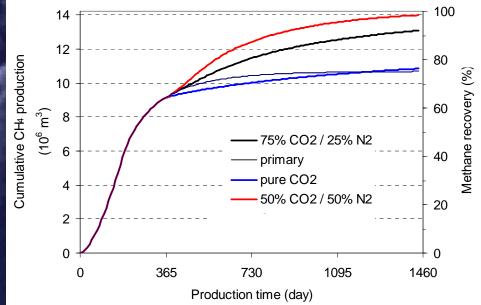
Outperforms 5-spot by a factor of 5 in the first year

Estimating Changes in Permeability During Enhanced Recovery using CO₂ Enriched Flue Gas

 $\alpha_{s} = 2.5 \text{ x} 10^{-4} \text{ m}^{3}/\text{sm}^{3}$

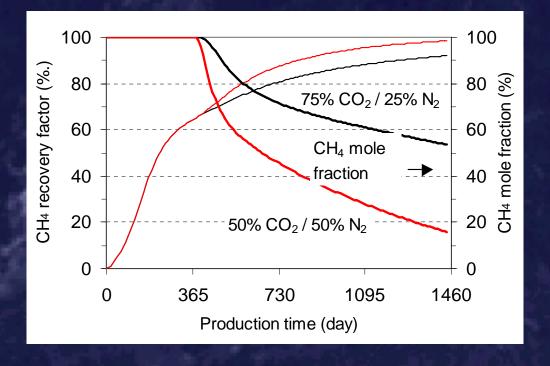
Simulation of CO₂ Storage and ECBM Recovery Using Horizontal Wells

- **Three ECBM Schemes:**
- Pure CO₂
- 75% CO₂/25% N₂
- 50% CO₂/50% N₂
- Primary production from all the wells in the first year
- Injection starts at year 2, with the central borehole converted into an injection well



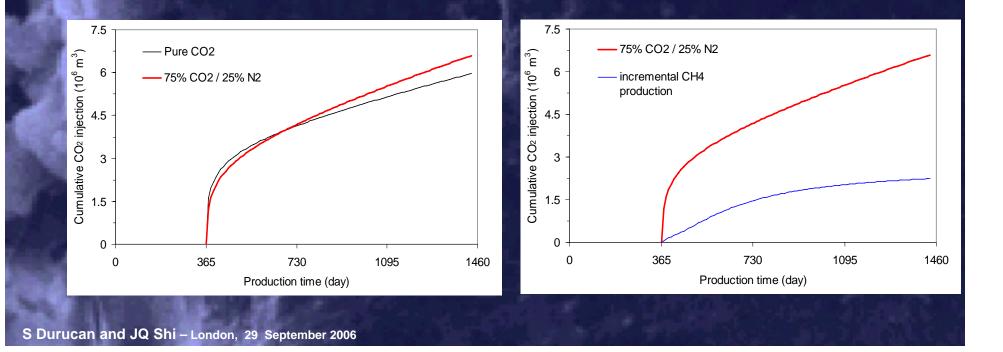
Cumulative CH₄ Production/Recovery Factor

Primary production from all the wells in the first year ~65% recovery


Incremental recovery for the next three years:

Primary recovery Pure CO_2 : 10%, no improvement over primary 75% $CO_2/25\%$ N₂: 27% 50% $CO_2/50\%$ N₂: 33%

Trade-Off Between CH₄ Recovery Factor and Gas Quality


- Gas quality deteriorates with increasing N₂ content in the gas injectant
- For the 75% CO₂ / 25% N₂ mixture, CH₄ mole fraction stays above 50% level throughout the production period
- Further enrichment in N₂ results in a steep decline in gas quality

Cumulative CO₂ Injection

5.91 million m³ CO₂ injected over the 3-year period for CO₂-ECBM

- Interestingly, ~10% more net CO₂ could be injected/stored if the CO₂ were mixed with N₂ at a ratio 3:1.
- The incremental CH₄ production over primary stands at 2.4 million m³, yielding an overall CO₂/CH₄ ratio of about 2.75:1

Concluding Remarks

- The 3-well horizontal well configuration was up to five times more productive than the 5-spot vertical well pattern for the coal seam reservoir used in the study.
- Injection of pure CO₂ into the central horizontal well, is likely to result in only limited incremental methane recovery over primary recovery
- The presence of the nitrogen component in the injected gas stream is capable of significantly improving the efficiency of enhanced methane recovery and CO₂ storage without compromising the CO₂ injection rates.
- There is, however, a trade off between incremental methane recovery and produced gas purity due to early nitrogen breakthrough.