Imperial College London

Energy and Green House Gas Mitigation Technologies Japan Society for the Promotion of Science-Imperial College London-University of Tokyo Symposium on Climate Change

Thursday 28th and Friday 29th September 2006

Imperial College London, South Kensington Campus, London SW7 2AZ

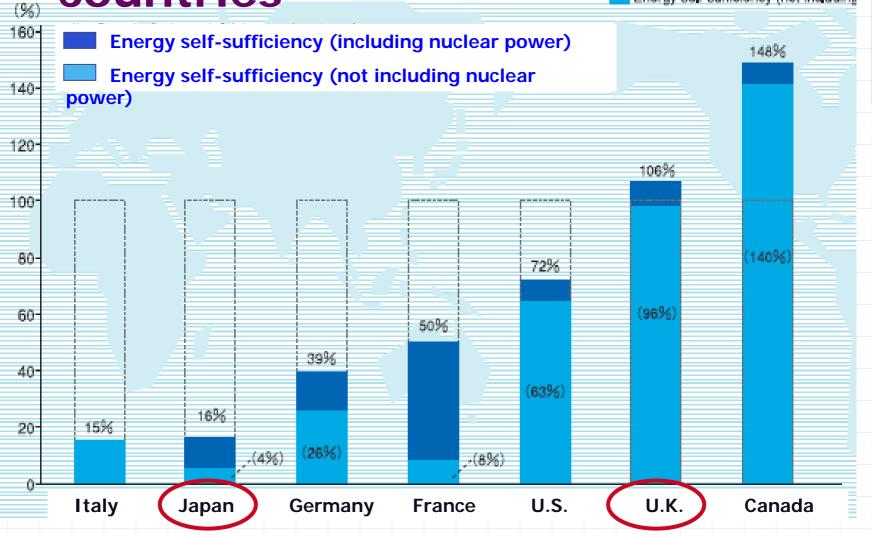
Current State of Japanese Researches on Geological CO₂ Storage

JSPS London Symposium on "Energy and Greenhouse Gas Mitigation Technology" September 29, 2006

> Sohei SHIMADA Dept. of Environment Systems The University of Tokyo

Outline of Presentation

 Introduction
 Geological CO₂ Storage in Aquifer
 Geological CO₂ Storage in Coal Seam
 Methane Hydrate Production by CO₂ Injection
 Estimate of Geological Storage Capacity


Conclusion

Introduction


- Japanese issues on energy supply and GHG emission
 - 1) Stable supply of primary energy resources
 - 2) Increase energy self-sufficiency rate
 - 3) GHG emission reduction (Kyoto protocol: GHG emission reduction by 6% against 1990 levels

between 2008 and 2012)

Energy self-sufficiency of major countries

CO₂ emissions produced by energy consumption in Japan

Geological Storage of CO₂ in Aquifer at NAGAOKA

Project sponsored by METI (Ministry of Economy, Trade and Industry)
 Project managed by:

 *RITE (Research Institute of Innovative Technology for the Earth)
 *ENAA (Engineering Advanced Association of Japan)

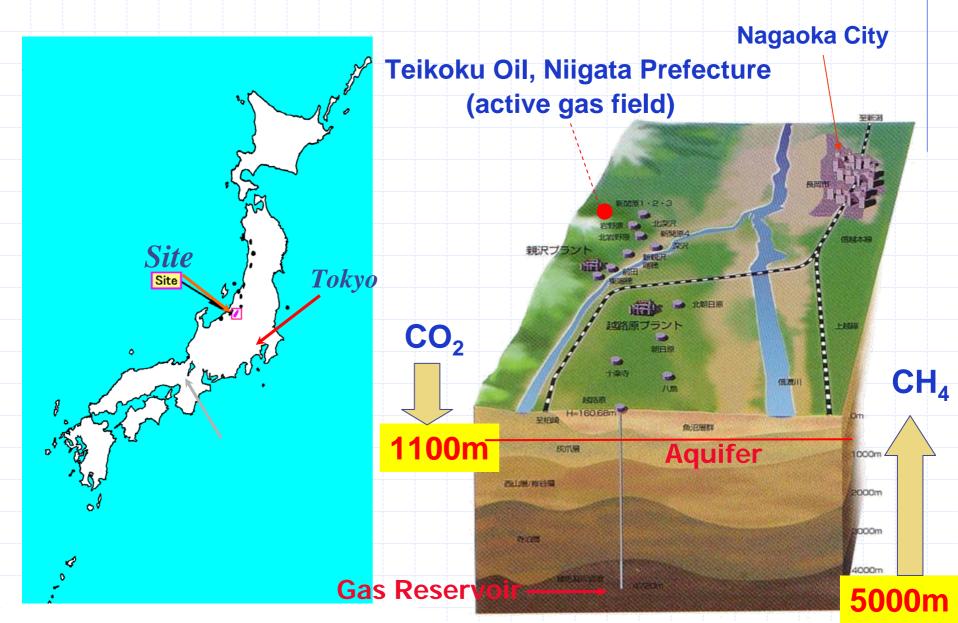
Project Outline

Objectives:

Establish a technology that provides stable, safe and long-term underground storage of CO₂ emitted from large-scale sources in Japan

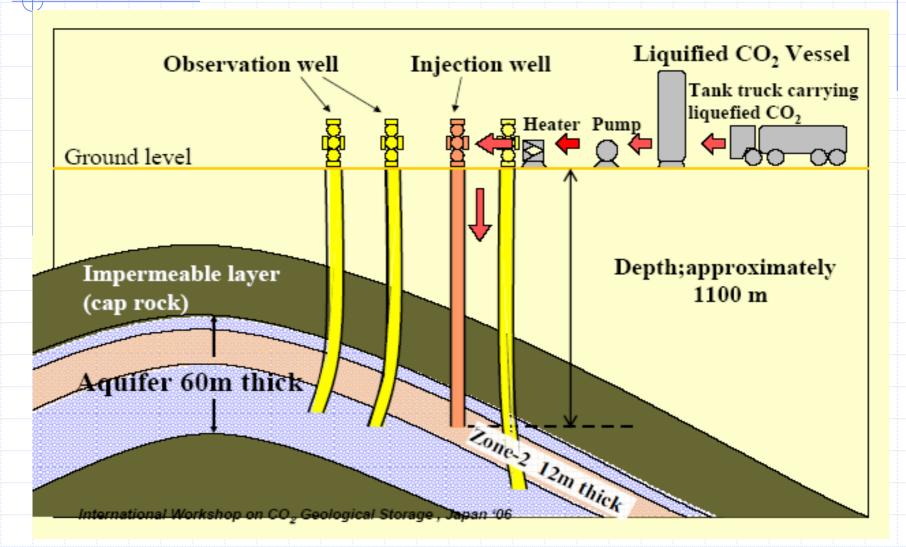
Period:

originally Planned for 2000 – 2004 (5 years) now Extended until 2007 for more 3 years


Budget/Expenditures

ca US\$ 32 M for 2000 - 2004 ca US\$ 30 M for 2005 - 2007

(Courtesy of RITE)

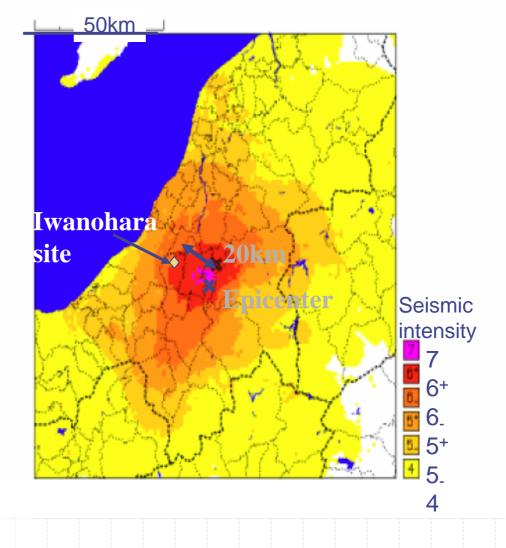

Field test site for CO₂ injection

Chronicle of Field Test

FY 2000 : Site Selection - South Nagaoka Gas Field Drilling of Wells, Well logging and Test of Core Sample FY 2000 : Injection well (IW-1) drilled FY 2001 : Two observation wells (OB-2, OB-3) drilled FY 2002 : One observation well (OB-4) drilled FY 2003 : Construction of the Facilities FY 2003 – 2004 : Injection of CO2 · · · 10,405t FY 2002 – present :Monitoring of CO2

Sketch of CO₂ Injection

Monitoring


Measurement (continuously)

Pressure & Temperature (well bottom and well head)

Time- lapse Logging (at about one month interval) Induction Log **Neutron Log** Acoustic Log Gamma Ray Log Time- lapse Cross- well Seismic Tomography Six times : Before the injection – After the injection Observation (continuously) Micro earthquake

Effect of Earthquake

- Niigata Chuetsu Earthquake Main shock: 23 Oct 2004 M6.8 at 10km depth Seismic intensity: 7
- Injection was automatically stopped at the main shock. Safety inspection was made:
- Surface Inspection
- Pressure & Temperature
- Geophysical Logging
- Acoustic Borehole Televiewer
- Cross Well Seismic Tomography
- Injection was carefully resumed after confirming safety (6 Dec 2004) injection rate: 40t-CO₂/day

(GSJ, 2004 http://www.gsj.jp/jishin/chuetsu_1023/)

Results of Field Test

- 10,400 tons of CO₂ was injected into an onshore saline aquifer within eighteen months in Nagaoka, Japan.
- CO₂ breakthrough was detected and CO₂ saturation history was estimated by time-lapse logging.
- CO₂ distribution in the aquifer was recognized by crosswell seismic tomography.
- Using the final reservoir model of history matching, long-term fate of the injected CO₂ was predicted.
- The follow-up monitoring in Nagaoka will be continued till 2007.

Geological CO₂ Storage in Coal Seam at ISHIKARI

 Project sponsored by METI
 Project managed by JCOAL (Japan Coal Energy Center)
 KANSO (The General Environmental Technos Co., Ltd.)

Objectives

Verify the CO₂ injection in Japanese coal seams in an efficient and safe manner
 Monitor the behavior of CO₂ injected in coal seams

- Identify Enhanced CH₄ Production
- Economic study of CCS using coal seams (ECBMR system)

Schedule of Project

Contents

Fundamental Study

Laboratory study

Mechanism of CH₄ displacement with CO₂ Optimum conditions for CO₂ fixation in coal seams Development of simulation models Potentiality of CO₂ sequestration in coal seams

Preliminary test

Field experiment Monitoring technology Improvement of CO₂ separation and capture

Economics evaluation

Pilot Test

Budget (Million US\$) 1.8 1.8 2.8 2.1 3.4

02

03

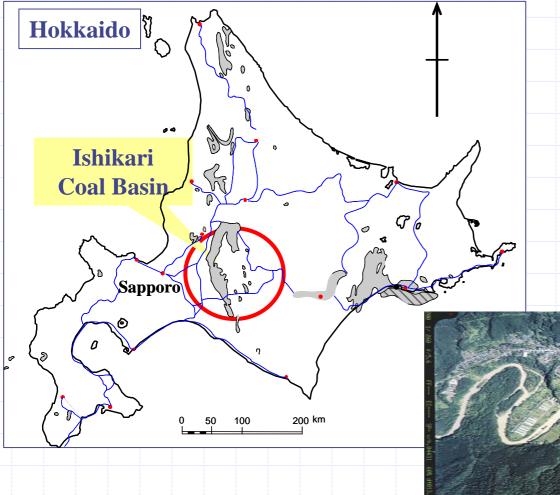
04

05

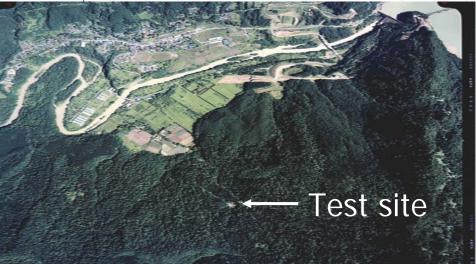
06

07

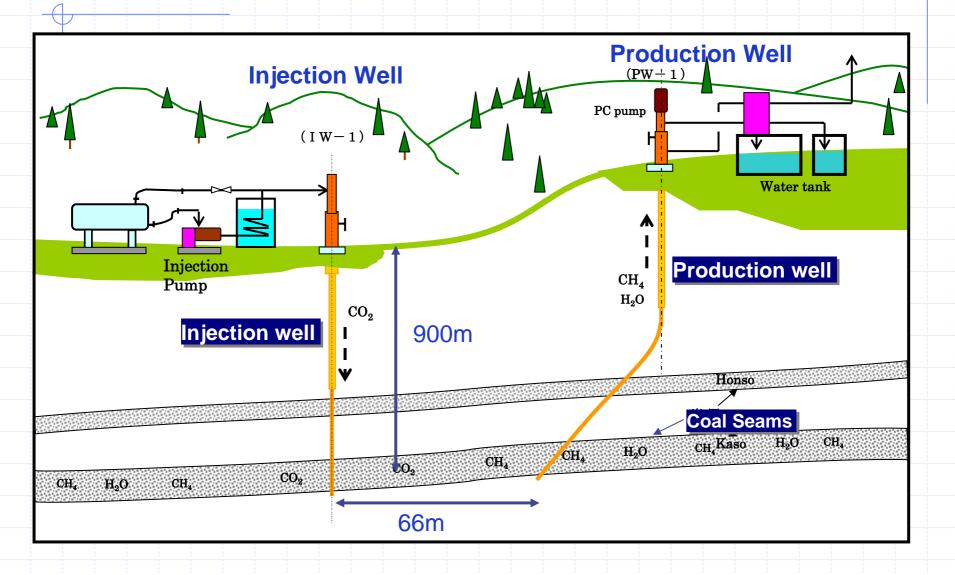
08


Field Experiment Site Selection Criteria

Field Condition:
Separated from mined-out area
Detailed data on geological structure available


Geological Condition:

- Depth of coal seam: more than 500m deep
- Thickness of coal seam: more than 5 m
- Cap rocks: more than 250 m thick
- Detailed geological data available


(Courtesy of KANSO)

Geological Formation

Formation	Depth(m) <thickness></thickness>	Lithology
Horonai	0.00 - 678.00 <678.00>	Dark gray mudstone, dark brown mudstone
Yubari (Main Coal Seams)	678.00 - 916.20 <238.20>	Dark brown mudstone, siltstone, very fine to coarse sandstone, coal, coaly shale, black shale
Upper	742.00 - 743.75 851.20 - 853.70	True Thickness (1.52) True Thickness (2.35)
Middle	890.08 - 896.30	True Thickness (5.64)
Horokabetsu	916.20 - 932.60 <16.40>	Dark mudstone

Outline of CO₂ Injection Tests

CO₂ Injection Site

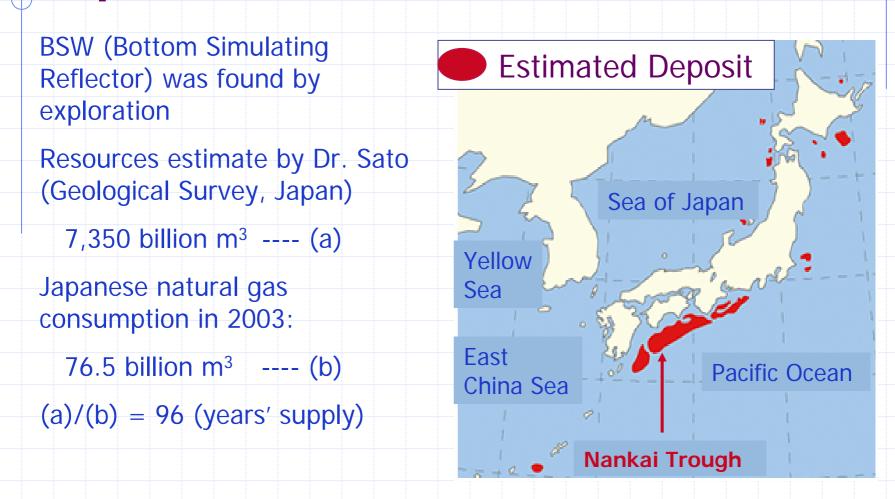
Liquid CO₂ Tank

火気注意

Pressurize pump, Vaporizer Unit

Injection Well

Production Well Site


Monitoring in Field Experiment

Subject		Content	Method
Ground	Leveling	Geological Structure	Grade 1 measurement at the spots
	Tiltmeter	Near the surface	Measurement of tilting
Gas	Gas Concent- ration	Fixed point observation of ground gas	CO ₂ & CH ₄ gas concent. of ground gas by gas sampler
	Groundwater	Fixed point observation of groundwater	Water temperature, pH and conductivity at spring water
	Vegetation	Vegetation monitoring around well site	Survey of vegetation distribution

Summary of Field Experiment

- From the water injection test, the average permeability of coal seam was about 1.0 md. But, very low gas and water production rates were observed.
- Production damages was observed. This might be due to plugged perforation holes with fine coal particles.
- The gas production rate reached the peak at four weeks after CO₂ injection. This increase was due to CO₂ injection.
- Injectivity is lower than expected. This caused by mainly by the swelling of coal by CO₂ injection.
- 115 tons of CO₂ was injected between 2004-2005. In this year, 300 tons of CO₂ will be planned to inject into the IW-1.

Methane Hydrate Resources in Japan

Exploration of Methane Hydrate

Nankai Trough:

Drilling up to 3300m deep

MH layer of total thickness 11m was proved at 1140-1210 m

MH content: 30-80%

Core Sample

Block type

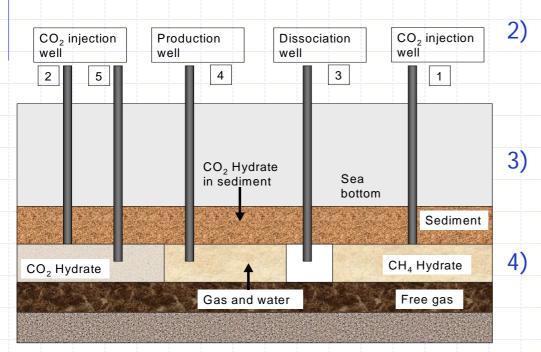
Deep sea drilling ship "JOIDE Resolution"

(courtesy of JOGMEC)

Pore filling type

Methane Hydrate Production by CO₂ Injection

Stage of fundamental research


MH formation has the soft strata, which promote the reduction of strength by the production of MH.

- This may cause the outburst of methane from MH formation by collapse of the soft strata.
- Need to construct the stable roof in order to control the dissociation rate.
- CO₂ hydrate is formed in lower pressure condition than CH₄ hydrate.

Methane Hydrate Production by CO₂ Injection

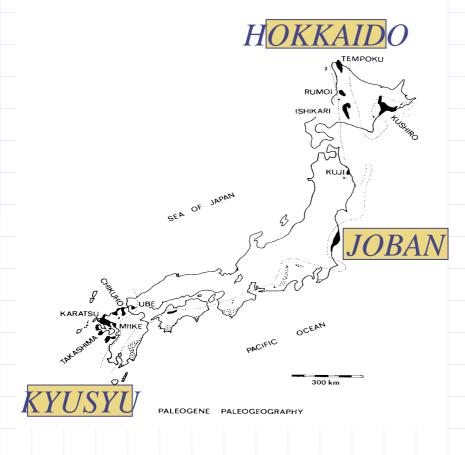
Objectives:

- 1) Construct stable artificial roof
- 2) Displace methane with carbon dioxide

Process:

- CO₂ injection through wells #1 and #2 to form stable CO₂ hydrate in the sediment.
 - Introduction of sea water through well #3 to dissociate CH₄ hydrate by increasing temperature.
 - CO_2 injection dissociated zone through well #5 to construct the CO_2 hydrate.
 - CH₄ production through well #4.

Potential of Geological CO₂ Storage in Japan

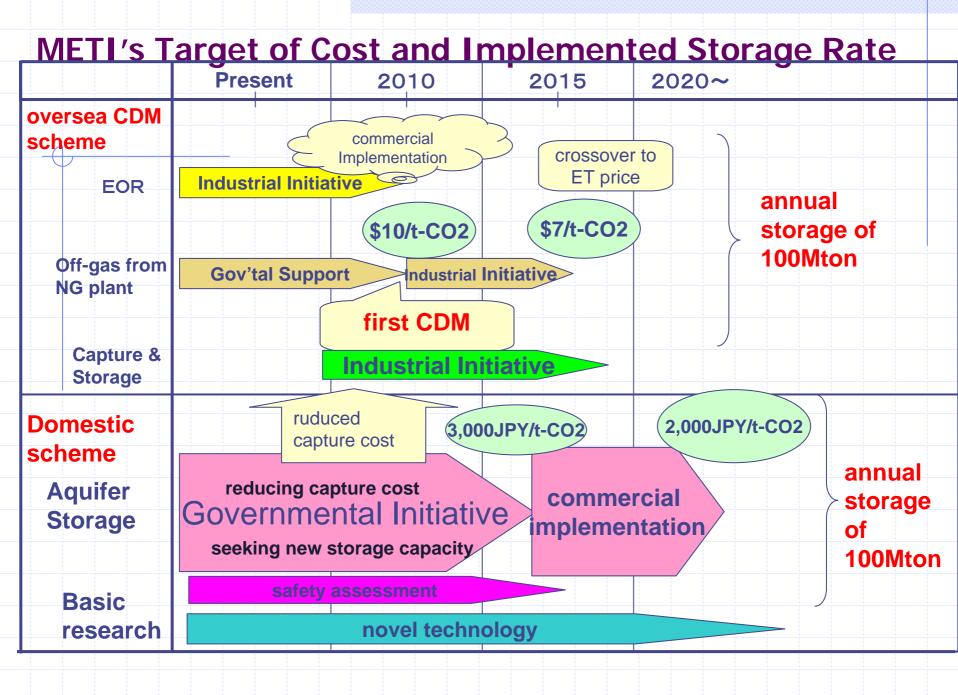

Potential for Aquifer Storage in Japan

	source	Aquifer with Closure structure (A Category)	Open Aquifer (B*Category)	
depleted oil & gas	data obtained during operation	A1: 3.5 Billion t-CO ₂	B1: 27.5 Billion t-CO ₂	
identified aquifer	public domain data by seismic and drillhole	A2: 5.2 Billion t-CO ₂	DT: 27.3 DIIII0IT I-CO ₂	
identified closure	public domain data by seismic only	A3: 21.4 Billion t-CO ₂	B2: 88.5 Billion t-CO ₂	
schematic	: illustration	weir	well	
sum		30.1 Billion t-CO ₂	116.0 Billion t-CO ₂	
total		146.1 Billion t-CO ₂		

NOTE) Inland basins, such as Seto In-land sea, Osaka Bay are excluded.

* only those located in waters shallower than 200m.

Potential of CO₂ Storage Capacity in Coal Seams


Huge amount of unmineable coal resources in Japan

(Onshore & Offshore)

Estimated coal resources : 182 billion tons

CBM potential: 2,540 billion m³

CO₂ storage capacity: 5,000 billion m³ (10 billion tons)

Conclusion

- CO₂ emission reduction and measures against it : Japanese important issue
- Substitution State And A State And A State A State
- CO₂ storage in Aquifer : perspective domestic geological CO₂ storage option
- ECBMR: mainly overseas geological storage option
- Methane Hydrate: expected to be a promising domestic primary energy resources. Need further researches and technological innovation for commercialization.

Acknowledgement

Photos in this presentation;

on NAGAOKA project (CO₂ storage in aquifer) was provided by RITE

 on ISHIKARI project (Enhanced CBM Recovery by CO₂ injection) was provided by KANSO

In Methane Hydrate was provided by JOGMEC (Japan Oil and Gas, Metals National Corporation)

Thank you for your attention!