Work and life in Japan of a JSPS Fellow

Barbara J Gabrys OUDCE and Department of Materials University of Oxford

Essential question you may ask:

> who?
> how?
> when?
> where?
> why?

Who?

> guest: myself, soft condensed matter physicist and neutron scatterer

- host: Professor Kanji Kajiwara, Faculty of Engineering and Design, Kyoto Institute of Technology, Kyoto
- > nearest neighbour: Professor Keisuke Kaji, Institute for Chemical Research, Kyoto University, Uji

How?

- through a Fellowship scheme of the JSPS awarded in 1996
- it provided a generous support of collaboration with Japanese colleagues
- started in 1985 with my Royal Society Fellowship held in the group of Professor Ryozo Kitamaru, Institute for Chemical Research, Kyoto University, Uji
- > in between: reciprocal visits

When?

> 04-03-1996 to 31-05-1996

at the peak of my responsibilities as a Lecturer in Physics: I was leading five PhD students, several final year projects in addition to lecturing and administrative duties

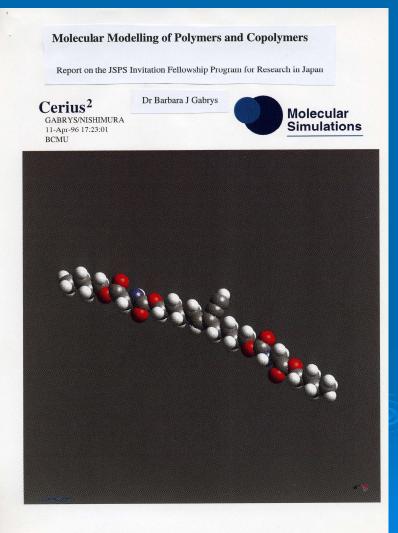
at the point of breaking into a new field – for me
 of modelling complex materials

Where?

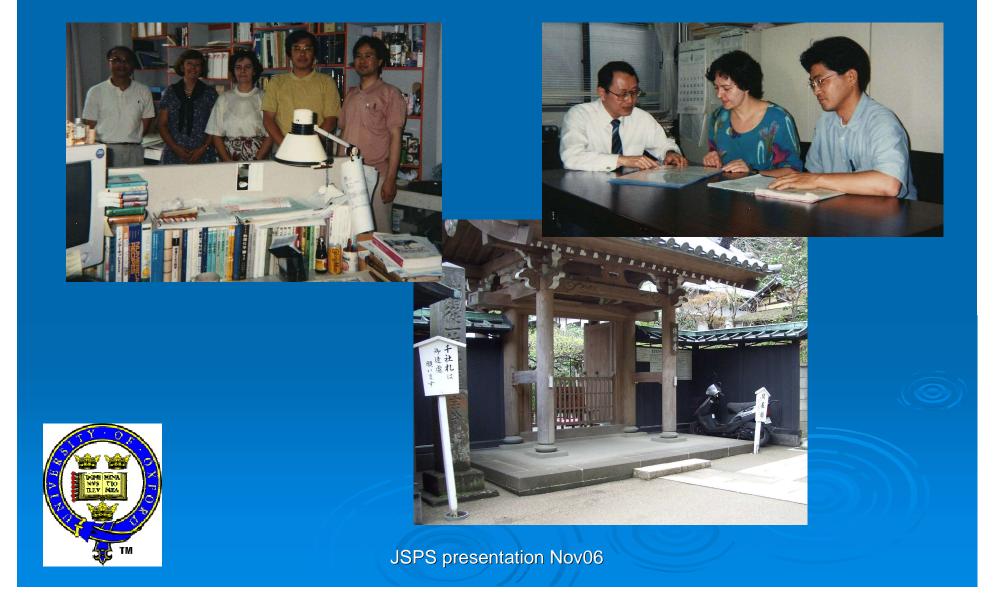
http://www.uji.kyoto-u.ac.jp/english/index.html

http://www.kit.ac.jp/english/02/02_010100.html

Why?


Molecular Modelling of Polymers and Copolymers to model the scattering law from polymers to gain a deeper insight into the structureproperty relationship of ionomer blends molecular modelling using Cerius² software identify areas of common interest for ongoing collaboration

Work



With Dr Yasuo Nishimura, Osaka National Research Institute

Daily life

Main outcome of the Fellowship

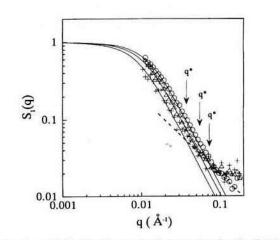
PII: S0032-3861(97)00243-7

Polymer Vol. 38 No. 24, pp. 6083-6085, 1997 © 1997 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0032-3861/97/\$17.00+0.00

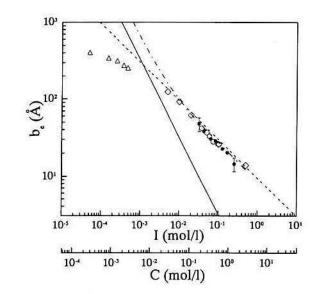
Electrostatic persistence length of NaPSS polyelectrolytes determined by a zero average contrast SANS technique

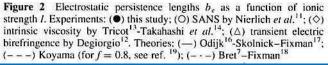
Koji Nishida^a, Hiroshi Urakawa^b, Keisuke Kaji^a,*, Barbara Gabrys^c and Julia S. Higgins^d ^aInstitute for Chemical Research, Kyoto University, Uji, 611 Kyoto-fu, Japan ^bFaculty of Engineering and Design, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, 606 Kyoto, Japan

^cDepartment of Physics, Brunel University, West London, Kingston Lane, Uxbridge UB8 3PH, Middlesex, UK


^dDepartment of Chemical Engineering, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW1 2AZ, UK (Revised 7 March 1997)

The electrostatic persistence lengths b_e of NaPSS polyions have been measured as a function of ionic strength *I* in the solutions using a small-angle neuron scattering (SANS) technique combined with a zero average contrast (ZAC) method. This ZAC method provides the optical *theta* condition distinguishing the intermolecular scattering functions $S_2(q)$, and thereby the scattering functions of a single chain $S_1(q)$ free from the intermolecular interferences were obtained. The resulting b_e values which were derived by the analysis of $S_1(q)$ are proportional to $I^{-1/2}$. This work confirms and extends an earlier SANS study where the contrast-match was used. © 1997 Elsevier Science Ltd.


(Keywords: polyelectrolytes; electrostatic persistence length; zero average contrast SANS)



Results

Figure 1 Logarithmic plot of intramolecular scattering function $S_1(q)$ as a function of the scattering vector q. q^* denotes the transition point (see text). (\bigcirc): C = 1.445 mol/l; (\triangle): C = 0.723 mol/l; (+): C = 0.241 mol/l. Solid lines: Debye functions for Gaussian coil; the values of parameter b_1 are listed in *Table 1*. Dashed line: des Cloizeaux function for N = 640 in the rod limit

•good agreement of experiment and theory (Koyama, Le Bret-Fixman) for ionic strength I>10⁻² mol/I; universal relationship be ~ $I^{-0.5}$ valid

• more experiments and theory needed to explain behaviour for I>10⁻² mol/l

There are at least 101 reasons to go to Japan...

... work is only one!

Play and socialising...

nature...

view from Shugakuin Villa

culture and customs...

special events...

梶慶輔教授退官記念 平成14年6月15日 於 ウェスティン都ホテル京都

retirement of Professor Kaji, Kyoto University, June 2002

food and drink...

FOTOSELRCH

Professor Toshiji Kanaya entertaining (April 04)

...and lots of other things yet to be discovered!

I would like to thank JSPS for giving me a unique opportunity to live and work in Japan fro several weeks.

